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Abstract

In recent years there has been a burgeoning
interest in the use of computational methods
to distinguish between elicited speech samples
produced by patients with dementia, and those
from healthy controls. The difference between
perplexity estimates from two neural language
models (LMs) - one trained on transcripts of
speech produced by healthy participants and
the other trained on transcripts from patients
with dementia - as a single feature for diag-
nostic classification of unseen transcripts has
been shown to produce state-of-the-art perfor-
mance. However, little is known about why
this approach is effective, and on account of
the lack of case/control matching in the most
widely-used evaluation set of transcripts (De-
mentiaBank), it is unclear if these approaches
are truly diagnostic, or are sensitive to other
variables. In this paper, we interrogate neural
LMs trained on participants with and without
dementia using synthetic narratives previously
developed to simulate progressive semantic de-
mentia by manipulating lexical frequency. We
find that perplexity of neural LMs is strongly
and differentially associated with lexical fre-
quency, and that a mixture model resulting
from interpolating control and dementia LMs
improves upon the current state-of-the-art for
models trained on transcript text exclusively.

1 Introduction

Alzheimer’s Disease (AD) is a debilitating neu-
rodegenerative condition which currently has no
cure, and Dementia of the Alzheimer’s Type (DAT)
is one of the most prominent manifestations of
AD pathology. Prior to availability of disease-
modifying therapies, it is important to focus on
reducing the emotional and financial burden of this
devastating disease on patients, caregivers, and the
healthcare system. Recent longitudinal studies of
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aging show that cognitive manifestations of future
dementia may appear as early as 18 years prior to
clinical diagnosis - much earlier than previously be-
lieved (Rajan et al., 2015; Aguirre-Acevedo et al.,
2016). With 30-40% of healthy adults subjectively
reporting forgetfulness on a regular basis (Cooper
et al., 2011), there is an urgent need to develop
sensitive and specific, easy-to-use, safe, and cost-
effective tools for monitoring AD-specific cogni-
tive markers in individuals concerned about their
cognitive function. Lack of clear diagnosis and
prognosis, possibly for an extended period of time
(i.e., many years), in this situation can produce un-
certainty and negatively impact planning of future
care (Stokes et al., 2015), and misattribution of AD
symptoms to personality changes can lead to fam-
ily conflict and social isolation (Boise et al., 1999;
Bond et al., 2005). Delayed diagnosis also results
in an estimated $7.9 trillion in medical and care
costs (Association, 2018) due to high utilization of
emergency care, amongst other factors, by patients
with undiagnosed AD.

Cognitive status is reflected in spoken language.
As manual analysis of such data is prohibitively
time-consuming, the development and evaluation
of computational methods through which symp-
toms of AD and other dementias can be identified
on the basis of linguistic anomalies observed in
transcripts of elicited speech samples have inten-
sified in the last several years (Fraser et al., 2016;
Yancheva and Rudzicz, 2016; Orimaye et al., 2017).
This work has generally employed a supervised
machine learning paradigm, in which a model is
trained to distinguish between speech samples pro-
duced by patients with dementia and those from
controls, using a set of deliberately engineered or
computationally identified features. However, on
account of the limited training data available, over-
fitting is a concern. This is particularly problematic
in DAT, where the nature of linguistic anomalies
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varies between patients, and with AD progression
(Altmann and McClung, 2008).

In the current study we take a different approach,
focusing our attention on the perplexity of a speech
sample as estimated by neural LMs trained on tran-
scripts of the speech of participants completing
a cognitive task. To date, the most successful ap-
proach to using LM perplexity as a sole distinguish-
ing feature between narratives by dementia patients
and controls was proposed by Fritsch et al. (2019)
and replicated by Klumpp et al. (2018). The ap-
proach consists of training two recurrent neural
LMs - one on transcripts from patients with demen-
tia and the other on transcripts from controls. The
difference between the perplexities estimated with
these two LMs results in very high classification
accuracy (AUC: 0.92) reported by both studies.

The explanation for this performance offered by
Fritsch et al. (2019) relies on observations that
patients with DAT describe the picture in an un-
foreseen way and their speech frequently diverts
from the content of the picture, contains repetitions,
incomplete utterances, and refers to objects in the
picture using words like “thing” or “something”.
This explanation, however, conflicts with the find-
ings by Klumpp et al. (2018) that demonstrate simi-
larly high classification accuracy (AUC: 0.91) with
a single hidden layer non-recurrent neural network
and bag-of-words input features, suggesting that
while word sequences play a role, it may not be as
large as previously believed by Fritsch et al. (2019).
Klumpp et al.’s (2018) explanation contrasts “local”
with “global language properties” of the picture de-
scriptions being captured by recurrent neural LMs
vs. the non-recurrent bag-of-words neural network
classifier, respectively. Both of these explanations
are based on informal qualitative observations of
the data and are not entirely satisfying because both
fail to explain the fact that it is precisely the differ-
ence between the control and dementia LMs that is
able to discriminate between patients and controls.
The individual LMs are not nearly as good at this
categorization task.

The objective of the current study is to quantify
the extent to which the differences between neural
LMs trained on language produced by DAT patients
and controls reflect known deficits in language use
in this disease - in particular the loss of access to
relatively infrequent terms that occurs with disease
progression (Almor et al., 1999a). We approach
this objective by interrogating trained neural LMs

with two methods: interrogation by perturbation
in which we evaluate how trained neural LMs re-
spond to text that has been deliberately perturbed
to simulate AD progression; and interrogation by
interpolation in which we develop and evaluate
hybrid LMs by interpolating between neural LMs
modeling language use with and without dementia.
We find neural LMs are progressively more per-
plexed by text simulating disease of greater severity,
and that this perplexity decreases with increasing
contributions of a LM trained on transcripts from
patients with AD, but increases again when only
this LM is considered. Motivated by these obser-
vations, we modify the approach of Fritsch et al.
(2019) by incorporating an interpolated model and
pre-trained word embeddings, with improvements
in performance over the best results reported for
models trained on transcript text exclusively.

2 Background

2.1 Linguistic Anomalies in AD
AD is a progressive disease, and the linguistic im-
pairments that manifest reflect the extent of this
progression (Altmann and McClung, 2008). In its
early stages, deficits in the ability to encode re-
cent memories are most evident. As the disease
progresses, it affects regions of the brain that sup-
port semantic memory (Martin and Chao, 2001) -
knowledge of words and the concepts they repre-
sent - and deficits in language comprehension and
production emerge (Altmann and McClung, 2008).

A widely-used diagnostic task for elicitation of
abnormalities in speech is the “Cookie Theft” pic-
ture description task from the Boston Diagnostic
Aphasia Examination (Goodglass, 2000), which is
considered to provide an adequate approximation
of spontaneous speech. In this task, participants
are asked to describe a picture of a pair of children
colluding in the theft of cookies from the top shelf
of a raised cupboard while their mother distract-
edly washes dishes1. When used as a diagnostic
instrument, the task can elicit features of AD and
other dementias, such as pronoun overuse (Almor
et al., 1999a), repetition (Hier et al., 1985; Pakho-
mov et al., 2018) and impaired recollection of key
elements (or “information units”) from the picture
(Giles et al., 1996). Due to the human-intensive
nature of the analyses to detect such anomalies,
automated methods present a desirable alternative.

1For a contemporary edition subscribing to fewer gender
stereotypes see (Berube et al., 2018).
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2.2 Classification of Dementia Transcripts

A number of authors have investigated automated
methods of identifying linguistic anomalies in
dementia. The most widely-used data set for
these studies is the DementiaBank corpus (Becker
et al., 1994), which we employ for the current
work. In some of the early work on this corpus,
Prud’hommeaux and Roark (2015) introduced a
novel graph-based content summary score to dis-
tinguish between controls and dementia cases in
this corpus with an area under the receiver oper-
ating characteristic curve (AUC) of 0.83. Much
of the subsequent work relied on supervised ma-
chine learning, with a progression from manually
engineered features to neural models mirroring gen-
eral Natural Language Processing trends. For ex-
ample, Fraser and Hirst (2016) report AD classi-
fication accuracy of over 81% on 10-fold cross-
validation when applying logistic regression to 370
text-derived and acoustic features. In a series of
papers, Orimaye et al. (2014; 2017; 2018) report
tenfold cross-validation F-measures of up to 0.73
when applying a Support Vector Machine (SVM)
to 21 syntactic and lexical features; SVM AUC on
leave-pair-out cross-validation (LPOCV) of 0.82
and 0.93 with the best manually-engineered feature
set and the best 1,000 of 16,903 lexical, syntactic
and n-gram features (with selection based on infor-
mation gain) respectively; and a LPOCV AUC of
0.73-0.83 across a range of deep neural network
models with high-order n-gram features. Yancheva
and Rudzicz (2016) derive topic-related features
from word vector clusters to obtain an F-score of
0.74 with a random forest classifier2. Karlekar
et al. (2018) report an utterance-level accuracy
of 84.9%3 with a convolutional/recurrent neural
network combination when trained on text alone.
While these results are not strictly comparable as
they are based on different subsets of the data, use
different cross-validation strategies and report dif-
ferent performance metrics, they collectively show
that supervised models can learn to identify patients
with AD using data from elicited speech samples.
However, as is generally the case with supervised
learning on small data sets, overfitting is a concern.

2.3 Perplexity and Cognitive Impairment

Perplexity is used as an estimate of the fit between a
probabilistic language model and a segment of pre-

20.8 with additional lexicosyntactic and acoustic features.
3This improved to 91.1% when incorporating POS tags.

viously unseen text. The notion of applying n-gram
model perplexity (a derivative of cross-entropy) as
a surrogate measure of syntactic complexity in spo-
ken narratives was proposed by Roark et al. (2007)
and applied to transcribed logical memory (story re-
call) test responses by patients with mild cognitive
impairment (MCI: a frequent precursor to AD di-
agnosis). In this work, sequences of part-of-speech
(POS) tags were used to train bi-gram models on
logical memory narratives, and then cross-entropy
of these models was computed on held-out cross-
validation folds. They found significantly higher
mean cross-entropy values in narratives of MCI
patients as compared to controls. Subsequent work
expanded the use of POS cross-entropy as one of
the language characteristics in a predictive model
for detecting MCI (Roark et al., 2011).

Perplexity can also be calculated on word tokens
and serve as an indicator of an n-gram model’s
efficiency in predicting new utterances (Jelinek
et al., 1977). Pakhomov et al (2010b) included
word and POS LM perplexity amongst a set of
measurements used to distinguish between speech
samples elicited from healthy controls and patients
with frontotemporal lobar degeneration (FTLD). A
LM was trained on text from an external corpus
of transcribed “Cookie Theft” picture descriptions
performed by subjects without dementia from a dif-
ferent study. This model was then used to estimate
perplexity of elicited speech samples in cases and
controls, with significant differences between mean
perplexity scores obtained from subjects with the
semantic dementia variant of FTLD and controls.
However, the authors did not attempt to use perplex-
ity score as a variable in a diagnostic classification
of FTLD or its subtypes.

Collectively, these studies suggest elevated per-
plexity (both at the word and POS level) may indi-
cate the presence of dementia. A follow-up study
(Pakhomov et al., 2010a) used perplexity calculated
with a model trained on a corpus of conversational
speech unrelated to the picture description task, as
part of a factor analysis of speech and language
characteristics in FTLD. Results suggested that the
general English LM word- and POS-level perplex-
ity did not discriminate between FTLD subtypes,
or between cases and controls. Taken together
with the prior results, these results suggest that
LMs trained on transcripts elicited using a defined
task (such as the “Cookie Theft” task) are better
equipped to distinguish between cases and controls
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than LM trained on a broader corpus.
As the vocabulary of AD patients becomes pro-

gressively constrained, one might anticipate lan-
guage use becoming more predictable with disease
progression. Wankerl et al. (2016) evaluate this
hypothesis using the writings of Iris Murdoch who
developed AD later in life - and eschewed edito-
rial revisions. In this analysis, which was based
on time-delimited train/test splits, perplexity de-
creased in her later output. This is consistent with
recent work by Weiner et al. (2018) that found
diminished perplexity was of some (albeit modest)
utility in predicting transitions to AD.

The idea of combining two perplexity estimates
- one from a model trained on transcripts of speech
produced by healthy controls and the other from
a model trained on transcripts from patients with
dementia - was developed by Wankerl et al. (2017)
who report an AUC of 0.83 using n-gram LMs
in a participant-level leave-one-out-crossvalidation
(LOOCV) evaluation across the DementiaBank
dataset. Fritsch et al. (2019) further improved
performance of this approach by substituting a neu-
ral LM (a LSTM model) for the n-gram LM, and
report an improved AUC of 0.92. However, it is
currently unclear as to whether this level of accu-
racy is due to dementia-specific linguistic markers,
or a result of markers of other significant differ-
ences between the case and control group such as
age (x̄ = 71.4 vs. 63) and years of education (x̄=
12.1 vs. 14.3) (Becker et al., 1994).

2.4 Neural LM perplexity

Recurrent neural network language models (RNN-
LM) (Mikolov et al., 2010) are widely used in ma-
chine translation and other applications such as
sequence labeling (Goldberg, 2016). Recurrent
Neural Networks (RNN) (Jordan, 1986; Elman,
1990) facilitate modeling sequences of indetermi-
nate length by maintaining a state vector, St−1, that
is combined with a vector representing the input
for the next data point in a sequence, xt at each
step of processing. Consequently, RNN-LMs have
recourse to information in all words preceding the
target for prediction, in contrast to n-gram models.
They are also robust to previously unseen word se-
quences, which with naı̈ve n-gram implementations
(i.e., without smoothing or backoff) could result in
an entire sequence being assigned a probability of
zero. Straightforward RNN implementations are
vulnerable to the so-called “vanishing” and “ex-

ploding” gradient problems (Hochreiter, 1998; Pas-
canu et al., 2012), which emerge on account of the
numerous sequential multiplication steps that occur
with backpropagation through time (time here indi-
cating each step through the sequence to be mod-
eled), and limit the capacity of RNNs to capture
long-range dependencies. An effective way to ad-
dress this problem involves leveraging Long Short
Term Memory (LSTM) networks (Hochreiter and
Schmidhuber, 1997), which use structures known
as gates to inhibit the flow of information during
training, and a mechanism using a memory cell
to preserve selected information across sequential
training steps. Groups of gates comprise vectors
with components that have values that are forced
to be close to either 1 or 0 (typically accomplished
using the sigmoid function). Only values close to 1
permit transmission of information, which disrupts
the sequence of multiplication steps that occurs
when backpropagating through time. The three
gates used with typical LSTMs are referred to as
Input, Forget and Output gates, and as their names
suggest they govern the flow of information from
the input and past memory to the current memory
state, and from the output of each LSTM unit (or
cell) to the next training step. LSTM LMs have
been shown to produce better perplexity estimates
than n-gram models (Sundermeyer et al., 2012).

2.5 Lexical Frequency

A known distinguishing feature of the speech of
AD patients is that it tends to contain higher fre-
quency words with less specificity than that of
cognitively healthy individuals (e.g., overuse of
pronouns and words like ”thing”) (Almor et al.,
1999b). Lexical frequency affects speech produc-
tion; however, these effects have different origins
in healthy and cognitively impaired individuals.
A leading cognitive theory of speech production
postulates a two-step process of lexical access in
which concepts are first mapped to lemmas and,
subsequently, to phonological representations prior
to articulation (Levelt, 2001). In individuals with-
out dementia, lexical frequency effects are evident
only at the second step - the translation of lemmas
to phonological representations and do not origi-
nate at the pre-lexical conceptual level (Jescheniak
and Levelt, 1994). In contrast, in individuals with
dementia, worsening word-finding difficulties are
attributed to progressive degradation of semantic
networks that underlie lexical access at the concep-
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tual level (Astell and Harley, 1996). While lexical
frequency effects are difficult to control in uncon-
strained purely spontaneous language production,
language produced during the picture description
task is much more constrained in that the picture
provides a fixed set of objects, attributes, and re-
lations that serve as referents for the the person
describing the picture. Thus, in the context of the
current study, we expect to find that both healthy in-
dividuals and patients with dementia describing the
same picture would attempt to refer to the same set
of concepts, but that patients with dementia would
tend to use more frequent and less specific words
due to erosion of semantic representations leading
to insufficient activation of the lemmas. Changes in
vocabulary have been reported in the literature as
one of the most prominent linguistic manifestations
of AD (Pekkala et al., 2013; Wilson et al., 1983;
Rohrer et al., 2007). We do not suggest that other
aspects of language such as syntactic complexity,
for example, should be excluded; although, there
has been some debate as to the utility of syntactic
complexity specifically as a distinguishing feature
(see (Fraser et al., 2015)).

3 Materials and Methods

3.1 Datasets

For LM training and evaluation we used transcripts
of English language responses to the “Cookie
Theft” component of the Boston Diagnostic Apha-
sia Exam (Goodglass, 2000), provided as part of
the DementiaBank database (Becker et al., 1994).
Transcripts (often multiple) are available for 169
subjects classified as having possible or probable
DAT on the basis of clinical or pathological exami-
nation, and 99 patients classified as controls.

For interrogation by perturbation, we used a set
of six synthetic “Cookie Theft” picture descrip-
tion narratives created by Bird et al. (2000) to
study the impact of semantic dementia on verb and
noun use in picture description tasks. While Bird
et al. (2000) focused on semantic dementia, a dis-
tinct condition from DAT, these synthetic narratives
were not based on patients with semantic demen-
tia. Rather, they were created to manipulate lexical
frequency by first compiling a composite baseline
narrative from samples by healthy subjects, and
then removing and/or replacing nouns and verbs in
that baseline with words of higher lexical frequency
(e.g., “mother” vs. “woman” vs. “she”). Lexical
frequency was calculated using the Celex Lexical

Database (LDC96L14) and words were aggregated
into groups based on four log frequency bands (0.5
- 1.0, 1.0 - 1.5, 1.5 - 2.0, 2.5 - 3.0: e.g., words in the
0.5 - 1.0 band occur in Celex more than 10 times
per million). These narratives are well-suited to the
study of lexical retrieval deficits in DAT in which
loss of access to less frequent words is observed
with disease progression (Pekkala et al., 2013).

In order to calculate mean log lexical frequency
on the DementiaBank narratives, we used the
SUBTLEXus corpus shown to produce lexical fre-
quencies more consistent with psycholinguistic
measures of word processing time than those cal-
culated from the Celex corpus (Brysbaert and New,
2009). The DementiaBank narratives were pro-
cessed using NLTK’s 4 implementation of the TnT
part-of-speech tagger (Brants, 2000) trained on the
Brown corpus (Francis and Kucera, 1979). Fol-
lowing Bird et al. (2000) only nouns and verbs
unique within the narrative were used to calculate
mean log lexical frequency. We did not stem the
words in order to avoid creating potentially artifi-
cially high/low frequency items. To validate the
mean log lexical frequency values obtained with the
SUBTLEXus corpus, we compared the log lexical
frequency means for the six narratives developed
by Bird et al. (2000) with their frequency band val-
ues using Spearman’s rank correlation and found
them to be perfectly correlated (ρ = 1.0).

The text of DementiaBank transcripts was ex-
tracted from the original CHAT files (Macwhinney,
2000). The transcripts as well as the six synthetic
narratives were lowercased and pre-processed by
removing speech and non-speech noise as well as
pause fillers (um’s amd ah’s) and punctuation (ex-
cepting the apostrophe).

3.2 Pre-trained models
Prior work with neural LMs in this context has used
randomly instantiated models. We wished to evalu-
ate the utility of pre-training for this task - both pre-
training of the LSTM in its entirety and pre-training
of word embeddings alone. For the former we used
a LSTM trained on the WikiText-2 dataset (Merity
et al., 2016) provided with the GluonNLP pack-
age5. 200-dimensional word embeddings, includ-
ing embeddings augmented with subword infor-
mation, (Bojanowski et al., 2017) were developed
using the Semantic Vectors package6 and

4Natural Language Toolkit: www.nltk.org
5https://github.com/dmlc/gluon-nlp
6https://github.com/semanticvectors/semanticvectors



1951

trained using the skipgram-with-negative-sampling
algorithm of Mikolov et al. (2013) for a sin-
gle iteration on the English Wikipedia (10/1/2019
edition, pre-processed with wikifl.pl7) with
a window radius of five8. We report results us-
ing skipgram embeddings augmented with sub-
word information as these improved performance
over both stochastically-initialized and WikiText-
2-pretrained LSTMs in preliminary experiments.

3.3 Training

We trained two sets of dementia and control LSTM
models. The first set was trained in order to repli-
cate the findings of Fritsch et al. (2019), using
the same RWTHLM package (Sundermeyer et al.,
2014) and following their methods as closely as
possible in accordance with the description pro-
vided in their paper. Each model’s cross-entropy
loss was optimized over 20 epochs with starting
learning rate optimization performed on a heldout
set of 10 transcripts. The second set was trained
using the GluonNLP averaged stochastic gradi-
ent weight-dropped LSTM (standard-lstm-lm-200
architecture) model consisting of 2 LSTM layers
with word embedding (tied at input and output) and
hidden layers of 200 and 800 dimensions respec-
tively (see Merity et al. (2017) for full details on
model architecture). In training the GluonNLP
models, the main departure from the methods used
by Fritsch et al. (2019) involved not using a small
heldout set of transcripts to optimize the learning
rate because we observed that the GluonNLPmod-
els converged well prior to the 20th epoch with a
starting learning rate of 20 which was used for all
stochastically initialized models. With pre-trained
models we used a lower starting learning rate of 5
to preserve information during subsequent training
on DementiaBank. All GluonNLP models were
trained using batch size of 20 and back propagation
through time (BPTT) window size of 10. During
testing, batch size was set to 1 and BPTT to the
length of the transcript (tokens). Unseen transcript
perplexity was calculated as eloss.

3.4 Evaluation

As subjects in the DementiaBank dataset partici-
pated in multiple assessments, there are multiple
transcripts for most of the subjects. In order to
avoid biasing the models to individual subjects, we

7Available at https://github.com/facebookresearch/fastText
8Other hyperparameters per (Cohen and Widdows, 2018)

followed the participant-level leave-one-out cross-
validation (LOOCV) evaluation protocol of Fritsch
et al. (2019) whereby all of the picture description
transcripts for one participant are held out in turn
for testing and the LMs are trained on the remain-
ing transcripts. Perplexities of the LMs are then
obtained on the heldout transcripts, resulting in two
perplexity values per transcript, one from the LM
trained on the dementia (Pdem) and control (Pcon)
transcripts. Held-out transcripts were scored using
these perplexity values, as well as by the difference
(Pcon − Pdem) between them.

3.5 Interrogation of models

For interrogation by perturbation, we estimated
the perplexity of our models for each of the six syn-
thetic narratives of Bird et al. (2000). We reasoned
that an increase in Pcon and a decrease in Pdem as
words are replaced by higher-frequency alternatives
to simulate progressive lexical retrieval deficits
would indicate that these models were indeed cap-
turing AD-related linguistic changes. For interroga-
tion by interpolation, we extracted the parameters
from all layers of paired LSTM LMs after training,
and averaged these as αLMdem+(1−α)LMcon to
create interpolated models. We hypothesized that
a decrease in perplexity estimates for narratives
emulating severe dementia would occur as α (the
proportional contribution of LMdem) increases.

4 Results and Discussion

The results of evaluating classification accuracy of
the various language models are summarized in Ta-
ble 1. The 95% confidence interval for GluonNLP
models was calculated from perplexity means ob-
tained across ten LOOCV iterations with random
model weight initialization on each iteration. The
RWTHLM package does not provide support for
GPU acceleration and requires a long time to per-
form a single LOOCV iteration (approximately 10
days in our case). Since the purpose of using the
RWTHLM package was to replicate the results pre-
viously reported by Fritsch et al. (2019) that were
based on a single LOOCV iteration and we ob-
tained the exact same AUC of 0.92 on our first
LOOCV iteration with this approach, we did not
pursue additional LOOCV iterations. However, we
should note that we obtained an AUC of 0.92 for
the difference betweenPcon andPdem on two of the
ten LOOCV iterations with the GluonNLP LSTM
model. Thus, we believe that the GluonNLP
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DEMENTIA CONTROL CONTROL-DEMENTIA
MODEL AUC 95% CI AUC 95% CI AUC 95% CI
RWTHLMLSTM 0.80 – 0.64 – 0.92 –
GluonNLPLSTM 0.80 ± 0.002 0.65 ± 0.002 0.91 ± 0.004

Table 1: Classification accuracy using individual models’ perplexities and their difference for various models.

Figure 1: Relationship between log frequency bands
used to replace words in synthetic Cookie Theft picture
descriptions to simulate degrees of semantic dementia
and perplexity of LSTM language models trained on
picture descriptions by controls and dementia patients.

LSTM model has equivalent performance to the
RWTHLM LSTM model.

Having replicated results of previously published
studies and confirmed that using the difference in
perplexities trained on narratives by controls and
dementia patients is indeed the current state-of-the-
art, we now turn to explaining why the difference
between these LMs is much more successful than
the individual models alone.

First, we used the six “Cookie Theft” narratives
designed to simulate semantic dementia to exam-
ine the relationship between Pcon and Pdem with
GluonNLP LSTM LMs and log lexical frequency
bands. The results of this analysis are illustrated
in Figure 1 and show that Pdem is higher than Pcon
on narratives in the lower log frequency bands (less
simulated impairment) and lower in the higher log
frequency bands (more simulated impairment).

We confirmed these results by calculating mean
log lexical frequency on all DementiaBank narra-
tives and fitting a linear regression model to test
for associations with perplexities of the two LMs.
The regression model contained mean lexical fre-
quency as the dependent variable and Pdem and
Pcon as independent variables, adjusted for age, ed-
ucation and the length of the picture description
narrative. In order to avoid likely practice effects

across multiple transcripts, we only used the tran-
script obtained on the initial baseline visit; however,
we did confirm these results by using all transcripts
to fit mixed effects models with random slopes and
intercepts in order to account for the correlation
between transcripts from the same subject (mixed
effects modeling results not shown).

The results demonstrate that the association be-
tween perplexity and lexical frequency is signifi-
cant and positive for the control LM (coeff: 0.563,
p < 0.001) and negative for dementia LM (coeff:
-0.543, p < 0.001). Age, years of education, and
length of the narrative were not significantly asso-
ciated with lexical frequency in this model. These
associations show that the control LM and demen-
tia LM are more “surprised” by narratives contain-
ing words of higher lexical frequency and lower
lexical frequency respectively. If the use of higher
lexical frequency items on a picture description
task portends a semantic deficit, then this particular
pattern of results explains why it is the difference
between the two models that is most sensitive to
manifestations of dementia and suggests that there
is a point at which the two models become equally
“surprised” with a difference between their perplex-
ities close to zero. In Figure 1, that point is be-
tween log lexical frequency bands of 2.0 and 2.5
corresponding to the mild to moderate degree of
semantic impairment reported by Bird et al. (2000).
Notably, in the clinical setting, the mild forms of de-
mentia such as mild cognitive impairment and mild
dementia are also particularly challenging and re-
quire integration of multiple sources of evidence for
accurate diagnosis (Knopman and Petersen, 2014).

The results of our interpolation studies are shown
in Figure 2. Each point in the figure shows the av-
erage difference between the perplexity estimate
of a perturbed transcript (Px) and the perplexity
estimate for the unperturbed (Po: frequency band
0) sample for this model9. While all models tend

9We visualized this difference because perplexities at
α=0.5 were generally higher, irrespective of whether compo-
nent models were initialized stochastically, or had pre-trained
word embeddings in common. Perplexities of α=0.75 models
were slightly lower than those of their majority constituents.
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RANDOM PRETRAINED RANDOM PRETRAINED
Pcon − Pα AUC 95% CI AUC 95% CI ACCeer 95% CI ACCeer 95% CI CI
α = 0.25 0.842 ± 0.008 0.838 ± 0.015 0.689 ± 0.036 0.724 ± 0.034
α = 0.5 0.816 ± 0.009 0.813 ± 0.005 0.669 ± 0.035 0.665 ± 0.033
α = 0.75 0.931 ± 0.003 0.941 ± 0.006 0.854 ± 0.031 0.872 ± 0.010
α = 1.0 0.908 ± 0.004 0.930 ± 0.005 0.846 ± 0.023 0.839 ± 0.017

Table 2: Performance of randomly-instantiated and pre-trained (subword-based skipgram embeddings) interpo-
lated “two perplexity” models across 10 repeated per-participant LOOCV runs. α indicates the proportional con-
tribution of the dementia model. ACCeer gives the accuracy at equal error rate. Best results are in boldface, and
results using the approach of Fritsch et al. (2019) are in italics.

to find the increasingly perturbed transcripts more
perplexing than their minimally perturbed counter-
parts, this perplexity decreases with increasing con-
tributions of the dementia LM. However, when only
this model is used, relative perplexity of the per-
turbed transcripts increases. This indicates that the
“pure” dementia LM may be responding to linguis-
tic anomalies other than those reflecting lack of ac-
cess to infrequently occurring terms. We reasoned
that on account of this, the α=0.75 model may
provide a better representation of dementia-related
linguistic changes. To evaluate this hypothesis, we
assessed the effects on performance of replacing
the dementia model with this interpolated model.
The results of these experiments (Table 2) reveal
improvements in performance with this approach,
with best AUC (0.941) and accuracy at equal er-
ror rate (0.872) resulting from the combination of
interpolation10 with pre-trained word embeddings.
That pre-trained embeddings further improve per-
formance is consistent with the observation that
the elevation in perplexity when transitioning from
α=0.75 to α=1.0 is much less pronounced in these
models (Figure 3). These results are significantly
better than those reported by Fritsch et al (2019),
and our reimplementation of their approach.

These improvements in performance appear to
be attributable to a smoothing effect on the perplex-
ity of the modified dementia models in response to
unseen dementia cases. Over ten repeated LOOCV
iterations, average perplexity on held-out demen-
tia cases was significantly lower than that of the
baseline ‘dementia’ model (51.1 ±0.81) for both
the α=0.75 (47.3±0.32) and pre-trained embed-
dings (44.8±0.53) models. This trend is further
accentuated with the severity of dementia - for
transcripts corresponding to a mini-mental state

10Simply weighting the difference in model perplexities
does not perform as well as interpolating model weights, with
at best a 0.001 improvement in AUC over the baseline.

Figure 2: Stochastically initialized models. Elevation
in perplexity over unperturbed transcript (Po) with the
proportional contribution of a dementia model (α) to
an interpolated model. Each point is the mean of 268
(held-out participants) data points. Error bars are not
shown as they do not exceed the bounds of the markers.

Figure 3: Pretrained word embeddings. Elevation in
perplexity over unperturbed transcript (Po) with the
proportional contribution of a dementia model (α) to
an interpolated model. Each point is the average of 268
data points, and error bars are not shown as they do not
exceed the bounds of the markers.
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exam (MMSE) ≤ 10 (n=16), average perplexities
are 148.29±7.69, 105.01±3.48 and 121.86±7.67
for baseline ‘dementia’, α=0.75 and pre-trained
embeddings models respectively. In both cases,
average perplexity of the interpolated (α=0.75) pre-
trained embeddings model fell between those of the
exclusively pre-trained (lowest overall) and exclu-
sively interpolated (lowest in severe cases) models.

A practical issue for automated methods to de-
tect dementia concerns establishing their accuracy
at earlier stages of disease progression, where a
readily disseminable screening tool would arguably
have greatest clinical utility, especially in the pres-
ence of an effective disease-modifying therapy. To
this end, Fritsch et al. (2019) defined a “screen-
ing scenario” in which evaluation was limited to
participants with a last available MMSE of 21 or
more, which corresponds to a range of severity en-
compassing mild, questionable or absent dementia
(Perneczky et al., 2006). In this scenario, classifi-
cation accuracy of the ‘paired perplexity’ LSTM
based model was only slightly lower (AUC: 0.87)
than the accuracy on the full range of cognitive
impairment (AUC: 0.92). We found similar per-
formance with our models. When limiting eval-
uation to those participants with a last-recorded
MMSE ≥ 21, average AUCs across 10 LOOCV
iterations were 0.836 ±0.014, 0.879 ±0.01, 0.893
±0.004, and 0.899 ±0.012 for the baseline (Fritsch
et al (2019)), pretrained embeddings, interpolated
(α=0.75) and interpolated (α=0.75) with pretrained
embeddings variants, respectively. These results
support the notion that paired neural LMs can be
used effectively to screen for possible dementia at
earlier stages of cognitive impairment.

The contributions of our work can be summa-
rized as follows. First, our results demonstrate that
the relationship between LM perplexity and lexical
frequency is consistent with the phenomenology of
DAT and its deleterious effects on patients’ vocabu-
lary. We show that the “two perplexities” approach
is successful at distinguishing between cases and
controls in the DementiaBank corpus because of
its ability to capture specifically linguistic mani-
festations of the disease. Second, we observe that
interpolating between dementia and control LMs
mitigates the tendency of dementia-based LMs to
be “surprised” by transcripts indicating severe de-
mentia, which is detrimental to performance when
the difference between these LMs is used as a basis
for classification. In addition, we find a similar

smoothing effect when using pre-trained word em-
beddings in place of a randomly instantiated word
embedding layer. Finally, we develop a modifica-
tion of Fritsch et al’s “two perplexity” approach
that is consistent with these observations - replac-
ing the dementia model with an interpolated variant,
and introducing pre-trained word embeddings at
the embedding layer. Both modifications exhibit
significant improvements in performance, with best
results obtained by using them in tandem. Though
not strictly comparable on account of differences
in segmentation of the corpus amongst others, we
note the performance obtained also exceeds that
reported with models trained on text alone in prior
research. Code to reproduce the results of our ex-
periments is available on GitHub11.

While using transcript text directly is appealing
in its simplicity, others have reported substantial
improvements in performance when POS tags and
paralinguistic features are incorporated, suggest-
ing fruitful directions for future research. Further-
more, prior work on using acoustic features shows
that they can contribute to discriminative models
(König et al., 2015); however, Dementia Bank au-
dio is challenging for acoustic analysis due to poor
quality and background noise. Lastly, while our
results do support the claim that classification oc-
curs on the basis of dementia-specific linguistic
anomalies, we also acknowledge that Dementia-
Bank remains a relatively small corpus by machine
learning standards, and that more robust validation
would require additional datasets.

5 Conclusion

We offer an empirical explanation for the success
of the difference between neural LM perplexities in
discriminating between DAT patients and controls,
involving lexical frequency effects. Interrogation
of control- and dementia-based LMs using syn-
thetic transcripts and interpolation of parameters
reveals inconsistencies harmful to model perfor-
mance that can be remediated by incorporating
interpolated models and pre-trained embeddings,
with significant performance improvements.
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