@inproceedings{feng-etal-2020-none,
title = "{``}None of the Above{''}: Measure Uncertainty in Dialog Response Retrieval",
author = "Feng, Yulan and
Mehri, Shikib and
Eskenazi, Maxine and
Zhao, Tiancheng",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.182",
doi = "10.18653/v1/2020.acl-main.182",
pages = "2013--2020",
abstract = "This paper discusses the importance of uncovering uncertainty in end-to-end dialog tasks and presents our experimental results on uncertainty classification on the processed Ubuntu Dialog Corpus. We show that instead of retraining models for this specific purpose, we can capture the original retrieval model{'}s underlying confidence concerning the best prediction using trivial additional computation.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="feng-etal-2020-none">
<titleInfo>
<title>“None of the Above”: Measure Uncertainty in Dialog Response Retrieval</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">Feng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shikib</namePart>
<namePart type="family">Mehri</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Maxine</namePart>
<namePart type="family">Eskenazi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tiancheng</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper discusses the importance of uncovering uncertainty in end-to-end dialog tasks and presents our experimental results on uncertainty classification on the processed Ubuntu Dialog Corpus. We show that instead of retraining models for this specific purpose, we can capture the original retrieval model’s underlying confidence concerning the best prediction using trivial additional computation.</abstract>
<identifier type="citekey">feng-etal-2020-none</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.182</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.182</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>2013</start>
<end>2020</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T “None of the Above”: Measure Uncertainty in Dialog Response Retrieval
%A Feng, Yulan
%A Mehri, Shikib
%A Eskenazi, Maxine
%A Zhao, Tiancheng
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F feng-etal-2020-none
%X This paper discusses the importance of uncovering uncertainty in end-to-end dialog tasks and presents our experimental results on uncertainty classification on the processed Ubuntu Dialog Corpus. We show that instead of retraining models for this specific purpose, we can capture the original retrieval model’s underlying confidence concerning the best prediction using trivial additional computation.
%R 10.18653/v1/2020.acl-main.182
%U https://aclanthology.org/2020.acl-main.182
%U https://doi.org/10.18653/v1/2020.acl-main.182
%P 2013-2020
Markdown (Informal)
[“None of the Above”: Measure Uncertainty in Dialog Response Retrieval](https://aclanthology.org/2020.acl-main.182) (Feng et al., ACL 2020)
ACL