@inproceedings{rinaldi-etal-2020-predicting,
title = "Predicting Depression in Screening Interviews from Latent Categorization of Interview Prompts",
author = "Rinaldi, Alex and
Fox Tree, Jean and
Chaturvedi, Snigdha",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.2",
doi = "10.18653/v1/2020.acl-main.2",
pages = "7--18",
abstract = "Accurately diagnosing depression is difficult{--} requiring time-intensive interviews, assessments, and analysis. Hence, automated methods that can assess linguistic patterns in these interviews could help psychiatric professionals make faster, more informed decisions about diagnosis. We propose JLPC, a model that analyzes interview transcripts to identify depression while jointly categorizing interview prompts into latent categories. This latent categorization allows the model to define high-level conversational contexts that influence patterns of language in depressed individuals. We show that the proposed model not only outperforms competitive baselines, but that its latent prompt categories provide psycholinguistic insights about depression.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="rinaldi-etal-2020-predicting">
<titleInfo>
<title>Predicting Depression in Screening Interviews from Latent Categorization of Interview Prompts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Alex</namePart>
<namePart type="family">Rinaldi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jean</namePart>
<namePart type="family">Fox Tree</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Snigdha</namePart>
<namePart type="family">Chaturvedi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Accurately diagnosing depression is difficult– requiring time-intensive interviews, assessments, and analysis. Hence, automated methods that can assess linguistic patterns in these interviews could help psychiatric professionals make faster, more informed decisions about diagnosis. We propose JLPC, a model that analyzes interview transcripts to identify depression while jointly categorizing interview prompts into latent categories. This latent categorization allows the model to define high-level conversational contexts that influence patterns of language in depressed individuals. We show that the proposed model not only outperforms competitive baselines, but that its latent prompt categories provide psycholinguistic insights about depression.</abstract>
<identifier type="citekey">rinaldi-etal-2020-predicting</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.2</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.2</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>7</start>
<end>18</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Predicting Depression in Screening Interviews from Latent Categorization of Interview Prompts
%A Rinaldi, Alex
%A Fox Tree, Jean
%A Chaturvedi, Snigdha
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F rinaldi-etal-2020-predicting
%X Accurately diagnosing depression is difficult– requiring time-intensive interviews, assessments, and analysis. Hence, automated methods that can assess linguistic patterns in these interviews could help psychiatric professionals make faster, more informed decisions about diagnosis. We propose JLPC, a model that analyzes interview transcripts to identify depression while jointly categorizing interview prompts into latent categories. This latent categorization allows the model to define high-level conversational contexts that influence patterns of language in depressed individuals. We show that the proposed model not only outperforms competitive baselines, but that its latent prompt categories provide psycholinguistic insights about depression.
%R 10.18653/v1/2020.acl-main.2
%U https://aclanthology.org/2020.acl-main.2
%U https://doi.org/10.18653/v1/2020.acl-main.2
%P 7-18
Markdown (Informal)
[Predicting Depression in Screening Interviews from Latent Categorization of Interview Prompts](https://aclanthology.org/2020.acl-main.2) (Rinaldi et al., ACL 2020)
ACL