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Abstract

Authorship attribution aims to identify the au-
thor of a text based on the stylometric analy-
sis. Authorship obfuscation, on the other hand,
aims to protect against authorship attribution
by modifying a text’s style. In this paper, we
evaluate the stealthiness of state-of-the-art au-
thorship obfuscation methods under an adver-
sarial threat model. An obfuscator is stealthy
to the extent an adversary finds it challenging
to detect whether or not a text modified by the
obfuscator is obfuscated – a decision that is
key to the adversary interested in authorship
attribution. We show that the existing author-
ship obfuscation methods are not stealthy as
their obfuscated texts can be identified with
an average F1 score of 0.87. The reason for
the lack of stealthiness is that these obfusca-
tors degrade text smoothness, as ascertained
by neural language models, in a detectable
manner. Our results highlight the need to de-
velop stealthy authorship obfuscation methods
that can better protect the identity of an author
seeking anonymity.

1 Introduction

Authorship attribution aims to identify the author
of a text using stylometric techniques designed to
capitalize on differences in the writing style of
different authors. Owing to recent advances in
machine learning, authorship attribution methods
can now identify authors with impressive accuracy
(Abbasi and Chen, 2008) even in challenging set-
tings such as cross-domain (Overdorf and Green-
stadt, 2016) and at a large-scale (Narayanan et al.,
2012; Ruder et al., 2016). Such powerful author-
ship attribution methods pose a threat to privacy-
conscious users such as journalists and activists
who may wish to publish anonymously (Times,
2018; Anonymous, 2018).

Authorship obfuscation, a protective counter-
measure, aims to evade authorship attribution by
obfuscating the writing style in a text. Since it

is challenging to accomplish this manually, re-
searchers have developed automated authorship
obfuscation methods that can evade attribution
while preserving semantics (PAN, 2018). How-
ever, a key limitation of prior work is that author-
ship obfuscation methods do not consider the ad-
versarial threat model where the adversary is “ob-
fuscation aware” (Karadzhov et al., 2017; Potthast
et al., 2018; Mahmood et al., 2019). Thus, in addi-
tion to evading attribution and preserving seman-
tics, it is important that authorship obfuscation
methods are “stealthy” – i.e., they need to hide the
fact that text was obfuscated from the adversary.

In this paper, we investigate the stealthiness
of state-of-the-art authorship obfuscation meth-
ods. Our intuition is that the application of au-
thorship obfuscation results in subtle differences
in text smoothness (as compared to human writ-
ing) that can be exploited for obfuscation detec-
tion. To capitalize on this intuition, we use off-the-
shelf pre-trained neural language models such as
BERT and GPT-2 to extract text smoothness fea-
tures in terms of word likelihood. We then use
these as features to train supervised machine learn-
ing classifiers. The results show that we can accu-
rately detect whether or not a text is obfuscated.

Our findings highlight that existing author-
ship obfuscation methods themselves leave behind
stylistic signatures that can be detected using neu-
ral language models. Our results motivate future
research on developing stealthy authorship obfus-
cation methods for the adversarial threat model
where the adversary is obfuscation aware.

Our key contributions are as follows:

• We study the problem of obfuscation detec-
tion for state-of-the-art authorship obfusca-
tion methods. This and the underlying prop-
erty of stealthiness has been given scant at-
tention in the literature. We also note that
this problem is potentially more challenging



2236

than the related one of synthetic text detec-
tion since most of the original text can be re-
tained during obfuscation.

• We explore 160 distinct BERT and GPT-2
based neural language model architectures
designed to leverage text smoothness for ob-
fuscation detection.

• We conduct a comprehensive evaluation of
these architectures on 2 different datasets.
Our best architecture achieves F1 of 0.87,
on average, demonstrating the serious lack
of stealthiness of existing authorship obfus-
cation methods.

Paper Organization: The rest of this paper pro-
ceeds as follows. Section 2 summarizes related
work on authorship obfuscation and obfuscation
detection. Section 3 presents our proposed ap-
proach for obfuscation detection using neural lan-
guage models. Section 4 presents details of
our experimental setup including the description
of various authorship obfuscation and obfusca-
tion detection methods. We present the exper-
imental results in Section 5 before concluding.
The relevant source code and data are available
at https://github.com/asad1996172/
Obfuscation-Detection.

2 Related Work

In this section, we separately discuss prior work on
authorship obfuscation and obfuscation detection.

2.1 Authorship Obfuscation

Given the privacy threat posed by powerful author-
ship attribution methods, researchers have started
to explore text obfuscation as a countermeasure.
Early work by Brennan et al. (2012) instructed
users to manually obfuscate text such as by imi-
tating the writing style of someone else. Anony-
mouth (McDonald et al., 2012, 2013) was pro-
posed to automatically identify the words and
phrases that were most revealing of an author’s
identity so that these could be manually obfus-
cated by users. Follow up research leveraged au-
tomated machine translation to suggest alternative
sentences that can be further tweaked by users
(Almishari et al., 2014; Keswani et al., 2016).
Unfortunately, these methods are not effective or
scalable because it is challenging to manually ob-
fuscate text even with some guidance.

Moving towards full automation, the digital text
forensics community (Potthast and Hagen, 2018)
has developed rule-based authorship obfuscators
(Mansoorizadeh et al., 2016; Karadzhov et al.,
2017; Castro-Castro et al., 2017). For example,
Karadzhov et al. (2017) presented a rule-based ob-
fuscation approach to adapt the style of a text to-
wards the “average style” of the text corpus. Cas-
tro et al. (2017) presented another rule-based ob-
fuscation approach to “simplify” the style of a text.

Researchers have also proposed search and
model based approaches for authorship obfusca-
tion. For example, Mahmood et al. (2019) pro-
posed a genetic algorithm approach to “search”
for words that when changed, using a sentiment-
preserving word embedding, would have the max-
imum adverse effect on authorship attribution.
Bevendorff et al. (2019) proposed a heuristic-
based search algorithm to find words that when
changed using operators such as synonyms or hy-
pernyms, increased the stylistic distance to the au-
thor’s text corpus. Shetty et al. (2018) used Gener-
ative Adversarial Networks (GANs) to “transfer”
the style of an input text to a target style. Emmery
et al. (2018) used auto-encoders with a gradient
reversal layer to “de-style” an input text (aka style
invariance).

2.2 Obfuscation Detection

Prior work has successfully used stylometric anal-
ysis to detect manual authorship obfuscation
(Juola, 2012; Afroz et al., 2012). The intuition
is that humans tend to follow a particular style
as they try to obfuscate a text. In a related
area, Shahid et al. (2017) used stylometric anal-
ysis to detect whether or not a document was
“spun” by text spinners. We show later that these
stylometric-methods do not accurately detect more
advanced automated authorship obfuscation meth-
ods.

There is increasing interest in distinguishing
synthetic text generated using deep learning based
language models such as BERT and GPT-2 from
human written text. Using contextual word likeli-
hoods, as estimated using a pre-trained language
model (Radford et al., 2019), Gehrmann et al.
(2019) were able to raise the accuracy of hu-
mans at detecting synthetic text from 54% to 72%.
Zellers et al. (2019) showed that a classifier based
on a language model can accurately detect syn-
thetic text generated by the same language model.

https://github.com/asad1996172/Obfuscation-Detection
https://github.com/asad1996172/Obfuscation-Detection
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However, the detection accuracy degrades when
different language models are used to generate
and to detect. Bakhtin et al. (2019) also showed
that the detection accuracy degrades when the syn-
thetic text is generated using a language model
trained on a different corpus.

In summary, recent research has leveraged lan-
guage models to detect their generated synthetic
text. However, in obfuscation we start with hu-
man written text and make modifications such that
text semantics is still preserved. This is in part
achieved by retaining chunks of the original writ-
ing. Thus, the quirks of the obfuscator will be min-
gled in unpredictable proportions and ways with
the author’s original writing style. This makes
the detection of obfuscated text different and po-
tentially more challenging than synthetic text de-
tection. To the best of our knowledge, this work
presents the first systematic study of the detection
of automatically obfuscated text.

3 Proposed Approach

3.1 Intuition

An automated authorship obfuscator changes the
input text so that it evades authorship attribu-
tion while preserving semantics. The quality and
smoothness of automated text transformations us-
ing the state-of-the-art obfuscators differ from that
of human written text (Mahmood et al., 2019).
Therefore, the intuition behind our obfuscation de-
tectors is to exploit the differences in text smooth-
ness between human written and obfuscated texts.
We capture text smoothness using powerful pre-
trained context aware neural language models.1 A
text with a relatively greater proportion of high
likelihood words is likely to be more smooth.

3.2 Detector Architectures

Figure 1 shows the pipeline of our method for de-
tecting whether or not a given text is obfuscated.
First, a language model is used to extract the like-
lihood (in the form of probability or rank) for each
word in the text. Second, these likelihoods are
used to build a smoothness representation for the
text. This is input to a supervised machine learn-
ing model that is trained to classify the text as hu-
man written or obfuscated. The three steps corre-
spond to three significant architectural dimensions

1BERT: https://ai.googleblog.com/2018/11/open-
sourcing-bert-state-of-art-pre.html;
GPT-2: https://openai.com/blog/better-language-models

of our detectors with multiple algorithmic options
in each dimension. Combinations of choices along
each dimension yield different architectures that
can be used by an adversary to detect obfuscated
documents. We detail each dimension next.

3.2.1 Word likelihood extraction
Given a word sequence, language models are de-
signed to predict the next word. They do this by
building contextual models of word occurrences as
probability distributions over the full vocabulary.
Then some heuristic is used to pick the next word
e.g., select the word with the highest probability.
In our case, instead of word prediction, we extract
the likelihood from the language model (either as
a probability or as a rank) for each word in the text
given its context.

The language model has a critical role. Thus,
we use neural language models with deep ar-
chitectures and trained on large amounts of data
which are better at identifying both long-term and
short-term context. In order to imitate an adver-
sary who may not have the significant resources
needed to train such models, we use off-the-shelf
pre-trained neural language models. Specifically,
we choose well-known context-aware neural lan-
guage models GPT-2 (Radford et al., 2019) and
BERT (Devlin et al., 2018). We choose both as
they use different approaches. GPT-2 has been
shown to perform better than BERT (Gehrmann
et al., 2019) at synthetic text detection, with word
rank giving higher performance than word proba-
bility. Their relative merit for obfuscation detec-
tion is unknown.

1) GPT-2. GPT-2 released by Open AI in 2019
uses at its core, a variation of the “transformer”
architecture, an attention based model (Vaswani
et al., 2017) and is trained on text from 45 million
outbound links on Reddit (40 GB worth of text).
We use GPT-2 to compute the conditional proba-
bility for word i as p(wi|w1...i−1). The position of
wi in the sorted list (descending order of probabil-
ity) of vocabulary words gives the word rank. The
authors (Radford et al., 2019) trained four versions
of GPT-2 differing in architecture size. Of these,
we used the small and medium versions containing
117M and 345M parameters, respectively. The au-
thors eventually also released a large version con-
taining 762M parameters and a very large version
containing 1542M parameters.2 We did not use

2https://openai.com/blog/gpt-2-6-month-follow-up/
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Figure 1: Pipeline for obfuscation detection

them because only the small and medium versions
were released at the time of our experimentation.

2) BERT. BERT released by Google in 2018
is also based on “Transformers”. It is trained
on text from Wikipedia (2.5B words) and Book-
Corpus (800M words). BERT considers a bi-
directional context unlike the uni-directional con-
text considered by GPT-2. Thus, in BERT the
conditional occurrence probability for word i is
p(wi|wi−k...i−1, wi+1...i+k) where k is the window
size on each direction. Rank is computed in the
similar way as GPT-2. We use both pre-trained
BERT: BERT BASE with 110M parameters and
BERT LARGE with 340M parameters.

We implement likelihood extraction for both
GPT-2 and BERT, using code made available by
the Giant Language Model Test Room (GLTR)
tool.3

3.2.2 Feature Representation
We experiment with two different representations
of smoothness. Each is explored with occurrence
probabilities and with ranks.

1) Binning based features: Text smoothness is
represented by the likelihood of words in text. A
text with a greater proportion of high likelihood
words is likely to be smoother. We aggregate this
information using fixed size bins representing dif-
ferent likelihood ranges. For probabilities we cre-
ate bin sizes of 0.001, 0.005 and 0.010. For ranks
we create bin sizes of 10, 50 and 100. Thus for
example, one feature representation is to consider
bins of ranks from 0 to 10, 11 to 20, 21 to 30 etc.
Each bin contains the proportion of words in the
document with likelihood in that range.

2) Image based features: Since the word like-
lihood values received from language models are
in essence signals, we explore signal detection ap-
proaches as well. For example, for audio classifi-

3https://github.com/HendrikStrobelt/detecting-fake-text

cation (Hershey et al., 2017) store plots of the log-
mel spectogram of the audios as images and then
apply image classification methods. VGG (Si-
monyan and Zisserman, 2014), was one of the top
performers of the different classifiers they tested.
Inspired by them, we explore obfuscation detec-
tion via image classification. Specifically, we ex-
plore a transfer learning approach wherein we use
the VGG-19 classifier4 trained for image classifi-
cation on ImageNet dataset5. For our method, we
sort the extracted likelihood values for the text in
descending order and then plot these values sav-
ing it as an image. This image is then processed
by the pre-trained VGG-19. We extract the docu-
ment’s 6 representation from the last flatten layer
of VGG-19 (before the fully connected layers) as
it contains high-level information regarding edges
and patterns in the image. We expect this resulting
feature representation vector to capture informa-
tion regarding text smoothness.

3.2.3 Classification
We experiment with Support Vector Machine
(SVM) with a linear kernel, Random Forest
Classifier (RFC) an ensemble learning method,
K Nearest Neighbor (KNN) which is a non-
parametric method, Artificial Neural Network
(ANN) which is a parametric method, and Gaus-
sian Naive Bayes (GNB) which is a probabilistic
method. All classifiers are trained using default
parameters from scikit-learn7 except for ANN,
where we use lbfgs solver instead of adam because
it is more performant and works well on smaller
datasets.

3.2.4 Detection Architectures
Options selected for each dimension combine to
form a distinct obfuscation detection architecture.

4https://keras.io/applications/#vgg19
5http://www.image-net.org/
6Terms ‘text’ and ‘document’ are used interchangeably
7https://scikit-learn.org/stable/
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With 4 language models giving probabilities or
ranks as output, 4 features (3 binning based fea-
tures and 1 image based feature) and 5 different
classifiers we experiment with a total of 160 dis-
tinct architectures. The assumption here is that a
determined adversary will similarly look for the
most effective obfuscation detector.

4 Experimental Setup

4.1 Authorship Obfuscation Approaches
As state-of-the-art automated authorship obfusca-
tors we identified the top two systems (Potthast
et al., 2018) from PAN, a shared CLEF task.8 We
also chose Mutant-X, a search based system pre-
sented in (Mahmood et al., 2019), which shows
better performance than the PAN obfuscation sys-
tems. These are detailed next.

Document Simplification (Castro-Castro et al.,
2017). This approach obfuscates by applying rule-
based text simplifications on the input document.
The process is as follows. 1) If the number of con-
tractions in the document is greater than the num-
ber of expansions, then replace all contractions
with expansions otherwise replace all expansions
with contractions. 2) Simplify by removing par-
enthetical texts that do not contain any named en-
tity, discourse markers or appositions. 3) Replace
words with synonyms that haven’t been already
used in the text. We implement this approach and
refer to it as DS-PAN17.

Style Neutralization (Karadzhov et al., 2017).
This system is also a rule-based text obfusca-
tor. First they calculate the average values for the
whole corpus for stylometric features such as stop-
word to non stopword ratio, punctuation to word
count ratio and average number of words per sen-
tence. Next, they calculate the values of same sty-
lomteric features for the input document. Finally,
using text transformation rules (e.g., replace ! with
!!, merge or split sentences etc.) they move the
document’s stylometric feature values towards the
corpus averages. We evaluate this approach using
the code provided by the authors and refer to it as
SN-PAN16.

MUTANT-X (Mahmood et al., 2019) This sys-
tem uses a genetic algorithm (GAs) in combi-
nation with an authorship attribution system to
identify words that when changed would have the
highest positive effect towards obfuscation. Text

8https://pan.webis.de/

transformations are done using a sentiment pre-
serving variation of Word2Vec (Yu et al., 2017).
The authors present two versions: MUTANT-X
writeprintsRFC, built using a traditional machine
learning based authorship attribution system and
MUTANT-X embeddingCNN, built using a deep
learning based authorship attribution system. We
evaluate MUTANT-X embeddingCNN using code
made available by authors.

4.2 Data

We use the two data collections which were used
by (Mahmood et al., 2019).

1) Extended Brennan Greenstadt corpus. This
text corpus from (Brennan et al., 2012) contains
699 documents written by 45 unique authors.
Documents are mainly academic in nature but they
do not contain any citations and section headings
and have under 500 words, as instructed by data
collectors. We refer to this collection as EBG.

2) Blog authorship corpus. This text corpus
which is from (Schler et al., 2006) contains more
than 600,000 blogger.com blog posts written by
19,320 unique authors. These texts are more ca-
sual in nature and are written without any instruc-
tions. We refer to this collection as BLOG.

The authors in (Mahmood et al., 2019) tested
their GA obfuscators using 49 EBG and 200
BLOG documents written by 10 authors.

4.2.1 Obfuscated versus Evaded Datasets
A document is considered obfuscated if it has been
processed by an authorship obfuscation tool. Thus
we processed each document in the 49 EBG and
200 BLOG sets using each of the three obfus-
cation systems in turn (DS-PAN17, SN-PAN16
and MUTANT-X embeddingCNN). This resulted
in 127 obfuscated EBG documents and 571 ob-
fuscated BLOG documents.9

An obfuscated document is viewed as an evaded
document if it successfully evades authorship at-
tribution. Using the writeprintsRFC authorship at-
tributor (Mahmood et al., 2019) for this purpose,
we process all obfuscated documents (127 and 571
for EBG and BLOG respectively). This resulted

9DS-PAN17, SN-PAN16 and MUTANT-X embed-
dingCNN respectively created 49, 49 and 29 obfuscated doc-
uments for EBG whereas for BLOG they created 200, 200
and 171 obfuscated documents. Lower number of documents
generated by MUTANT-X is due to the fact that it only obfus-
cates documents that are correctly classified by the attribution
classifier it uses.



2240

Dataset Train Test
Original Obfuscated/

Evaded Original Obfuscated/
Evaded

EBG
obfuscated 431 80 268 47

EBG
evaded 236 29 235 30

BLOG
obfuscated 2000 292 1900 277

BLOG
evaded 700 71 1000 113

Table 1: Number of original and obfuscated/evaded
documents in train and test sets of each of the four
datasets

in 59 evaded EBG documents (out of 127) and 184
evaded BLOG documents (out of 571).

Despite the type and extent of transformations
made, the remaining obfuscated documents did
not evade the attributor. The evaded documents
are those where the modification strategy some-
how crossed an implicit threshold for evading au-
thorship attribution. Thus, we surmise that the
evaded documents are likely to be relatively less
smooth. It is noteworthy that evaded documents
are the realistic goal from a privacy seeking user’s
perspective. Thus, in addition to assessing detec-
tion for obfuscated data, we also assess detection
for evaded data for both (EBG and BLOG) obfus-
cated datasets.

4.2.2 Final datasets and cross validation

For each dataset, we use the original and obfus-
cated/evaded documents by 5 (out of 10) authors
for training and the documents by the remaining 5
authors for testing. An important decision to make
here is with regards to the distribution of origi-
nal documents versus obfuscated (or evaded) ones
in our training and testing set. We have no real
world scenario to mimic in that we have not en-
countered any real world use of automated obfus-
cators and their outputs. Therefore we make the
datasets under a reasonable assumption that orig-
inal documents are in the vast majority. Thus we
create train and test datasets with roughly 85% -
90% original documents. We do this by adding
more original documents from each data collec-
tion to achieve these proportions. Overall, we en-
sure that each author’s documents (of any version)
are all either in the train or in the test set. Table
1 provides the size details for our obfuscated and
evaded datasets.

4.3 Obfuscation Detection Methods

4.3.1 Methods from our architecture

We propose a total of 160 distinct architectures
(see 3.2.4). Testing these for each of the four
datasets, we conduct a total of 640 distinct obfus-
cation detection experiments. In addition, we ex-
plore three other methods; the first is inspired by
recent research to detect synthetic text. The other
two were used previously to detect manually ob-
fuscated documents.

4.3.2 Other Methods

1) GLTR (Gehrmann et al., 2019). The au-
thors present a tool to help humans distinguish be-
tween original and machine generated synthetic
text. Their tool uses pretrained language mod-
els to extract word likelihoods and presents their
plot to humans making the decision. Their best
model uses GPT-2 117M language model to ex-
tract word ranks which are then put in 4 unequal
range bins: 0-10, 10-100, 100-1000 and greater
than 1000. We test the same method on our ob-
fuscation detection problem. For obfuscation de-
tection, we tested this feature set with linear SVM
and RFC. Among these, linear SVM performed
the best.

2) Character trigrams + KNN (Juola, 2012).
This paper presents a stylometric approach to de-
tect manually obfuscated documents. Firstly, they
preprocess each document by unifying case and
separating punctuation (e.g., !! becomes ! !). Then
they represent each document using character tri-
grams. Finally the classification is performed us-
ing KNN with normalized cosine distance. We
implement this approach to evaluate it against au-
tomated authorship obfuscaters.

3) Writeprints + SVM (Afroz et al., 2012). This
paper also uses stylometric features and is also fo-
cused on detecting manual obfuscation. It is also
similar to the approach in (Shahid et al., 2017),
which uses stylometric features to perform spun
document detection. Afroz et al. tested with 3
different feature sets of which writeprints was the
best. Their writeprints feature set contains charac-
ter related features (e.g., total characters, percent-
age of uppercase letters etc.), word related features
(e.g., total words, frequency of large words etc.)
and other features including frequencies of digits,
special characters, function words etc. They use
this feature set with SVM (using poly kernel) to
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perform obfuscation detection. On our datasets,
we found linear SVM to be working better than
the polynomial one, so we report results with lin-
ear SVM. We implement this writeprints approach
with linear SVM as our final detector.

5 Results

Summary trends: After averaging we find that
for obfuscation detection, 25% of all 160 archi-
tectures achieve F1 score greater than 0.76, 50%
achieve F1 score greater than 0.72 and a high 75%
of them were able to achieve F1 score greater than
0.52.

Figure 2 summarizes the performances of all
160 different architectures across the four datasets.
We see that obfuscation detection is easier in EBG
than in BLOG with median EBG F1 scores being
significantly better than median BLOG F1 scores
(notches do not overlap (Krzywinski and Altman,
2014)). This can be explained by the fact that
EBG contains scholarly articles that are relatively
more consistent in their smoothness than blogs.
This likely makes it easier to pick up on the dif-
ference in smoothness caused by obfuscated docu-
ments in EBG than in BLOG. We can also see that
evaded documents achieve a higher maximum F1
score than obfuscated documents. This confirms
our intuition presented in 4.2.1, that evaded doc-
uments are likely to be less smooth and therefore
easier to detect than obfuscated documents. How-
ever, we also see that F1 scores for evaded datasets
are less stable (greater box size) than obfuscated
datasets. We believe that this is due to the fact that
there are fewer documents in evaded datasets as
compared to their respective obfuscated datasets
(see Table 1).
Performance evaluation: In terms of architecture
selection, instead of choosing randomly across
160 architectures, we make the following assump-

EBG obfuscated EBG evaded BLOG obfuscated BLOG evaded0.0

0.2

0.4

0.6

0.8

1.0

F1
 sc

or
e

Figure 2: Notched box plots for obfuscation detection
F1 scores using all 160 architectures for each dataset.

Dataset Models P R F1

EBG
obfuscated

BERT LARGE + ranks +
VGG-19 + RFC

1.00 0.85 0.92

BERT LARGE + ranks +
VGG-19 + SVM

0.98 0.83 0.90

GLTR + SVM 1.00 0.70 0.83
Writeprints + SVM 0.67 0.38 0.49
Character trigrams + KNN 0.64 0.15 0.24

EBG
evaded

BERT LARGE + probs +
bins(0.010) + ANN

1.00 0.90 0.95

BERT BASE + probs + VGG-
19 + GNB

1.00 0.90 0.95

GLTR + SVM 1.00 0.80 0.89
Writeprints + SVM 0.79 0.63 0.70
Character trigrams + KNN 1.00 0.17 0.29

BLOG
obfuscated

BERT BASE + probs + VGG-
19 + ANN

0.85 0.71 0.77

BERT BASE + probs + VGG-
19 + SVM

0.79 0.74 0.77

GLTR + SVM 0.92 0.40 0.56
Writeprints + SVM 0.71 0.41 0.52
Character trigrams + KNN 0.41 0.50 0.45

BLOG
evaded

GPT-2 345M + ranks +
VGG-19 + GNB

0.82 0.83 0.83

BERT BASE + probs + VGG-
19 + ANN

0.79 0.81 0.80

GLTR + SVM 0.86 0.55 0.67
Writeprints + SVM 0.84 0.62 0.71
Character trigrams + KNN 0.86 0.50 0.63

Table 2: Obfuscation detection results (P: precision, R:
recall, F1: F1 score).

tion. We assume that the adversary is knowledge-
able about the various choices, tests these alterna-
tives and employs the best configuration. Thus,
we present results for the best models, based on
F1 scores for obfuscation detection, achievable by
the adversary (Table 2). Table 2 also presents re-
sults for the three additional methods presented in
section 4.3.2. Our best BERT and GPT2 combi-
nations outperform all other methods across each
of the four datasets in F1 score and recall. Along
with (GLTR + SVM) these achieve the best preci-
sion for the EBG datasets. In BLOG obfuscated,
GLTR based method achieves the highest preci-
sion whereas in BLOG evaded both the GLTR
based method and character trigrams method top
the chart - however in each case with a sizeable
penalty paid in recall and therefore in F1 score.
In summary, we see that using the best of meth-
ods the adversary can detect evaded and obfus-
cated documents with F1 score of 0.77 or higher
(average 0.87 across datasets) which indicates that
the tested state-of-the-art obfuscators are far from
stealthy.

5.1 Detector Architecture Choices Analysis

Now we analyze the effect of different choices
made within each of the three dimensions depicted
in Figure 1. As mentioned earlier, for a privacy
seeking user evading author attribution is more im-
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Figure 3: Notched box plots of F1 scores for all dimensions across the two evaded datasets. For each dataset every
notched boxplot in (a) is generated from 40 experiments (experiments correspond to architectures), (b) is generated
from 80 experiments, (c) is generated from 120 experiments for binning and 40 for image whereas (d) is generated
from 32 different experimental combinations.

portant than just obfuscation. So, in this section
we present architecture analysis results only for
evaded datasets involving 320 experiments (160
each for EBG evaded and BLOG evaded).

5.1.1 Dimension 1: Language model &
output type

Figure 3 (a) presents notched box plots compar-
ing distribution of F1 scores achieved by language
models across both datasets. In EBG evaded,
BERT language models achieve higher maximum
F1 score (0.95) than GPT-2 (0.90 - 0.91). On
the other hand, in BLOG evaded, GPT-2 345M
achieves higher maximum F1 score (0.83) than
others (0.75 - 0.80). Relatively, BERT shows
greater consistency in F1 score (box size) than
GPT-2 in both datasets. We believe that the
bidirectional nature of BERT helps in capturing
context and consequently smoothness better than
GPT-2 which is uni-directional.

While the difference in maximum F1 score be-
tween ranks and probabilities is slight for each
dataset (Figure 3 (b)) box sizes show the spread in
F1 scores is smaller with probabilities than with
ranks. Upon further investigation, we find that
experiments which use probabilities with image
based features have an inter-quartile range of 0.05
and 0.1 for EBG and BLOG respectively whereas
for experiments using probabilities with binning
based features, this range is 0.32 for both datasets.
On the other hand, inter-quartile range for exper-

iments using ranks with image based features is
0.08 and 0.05 for EBG and BLOG whereas for
experiments using ranks with binning based fea-
tures, this range is 0.49 and 0.42 respectively. This
shows that for both datasets, greater variation in
F1 scores for ranks as compared to probabilities is
caused by binning based features. We believe that
binning ranks with fixed bin sizes (10, 50, 100) is
less stable for both BERT and GPT-2 which have
different limits of ranks - this could account for the
larger inter-quartile range using ranks.

5.1.2 Dimension 2: Feature type

The box sizes in Figure 3 (c) show that im-
age based features exhibit strikingly greater sta-
bility in F1 scores than binning based features.
Image based features also achieve significantly
higher median F1 score than with binning for
both datasets. This can in part be explained by
the observation stated earlier that some bin size
choices tested perform much worse than others be-
cause of not being fine-tuned. There is no differ-
ence between feature types in maximum F1 score
for EBG whereas in BLOG, image based fea-
ture achieve somewhat higher maximum F1 score
(0.83) than binning based features (0.78). We be-
lieve that the reason why image based features
work so well is that VGG-19, the image model
we use to extract features, is powerful enough to
recognize the slopes in plots which represent the
smoothness in our case.
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5.1.3 Dimension 3: Classifier
Figure 3 (d), shows that for EBG, ANN and GNB
achieve higher maximum F1 score (0.95), whereas
for BLOG, GNB achieve higher maximum F1
score (0.83). KNN and ANN consistently achieve
far more stable F1 scores than other classification
methods. In both datasets, KNN achieves signifi-
cantly higher median F1 score than other classifi-
cation methods. ANN also follows the same pat-
tern with the exception of GNB in BLOG evaded.
We believe that the reason why KNN and ANN
achieve relatively high and stable performance is
in their nature of being able to adapt to diverse and
complex feature spaces.

5.2 Takeaway

In summary we conclude that BERT with proba-
bilities is a good choice for dimension 1. (We re-
mind the reader that in contrast, in the area of syn-
thetic text detection (Gehrmann et al., 2019) GPT-
2 had the edge over BERT). Image based features
are a clear winner in dimension 2 while KNN and
ANN are the best candidates for dimension 3. Key
to note as well is that the top performing architec-
tures in Table 2 differ across datasets indicating
the need for dataset specific choices.

5.3 Insights

Figure 4 validates our intuition from Section 3 that
the text generated by obfuscators is less smooth
than the original text. Using EBG obfuscated
dataset and BERT BASE for illustration, we first
sort words in a document by estimated proba-
bility and plot average probability at each rank.
The steeper the fall in the curve, the lower the
smoothness of text. This plot shows that orig-
inal documents are generally more smooth than
obfuscated documents. The average detection er-
ror rates (Mutant-X embeddingCNN: 0.72, SN-
PAN16: 0.48, and DS-PAN17: 0.07) are also
consistent with the plot. These results show that
Mutant-X is the most stealthy obfuscator while
DS-PAN17 is the least stealthy obfuscator.

6 Conclusion

In this paper, we showed that the state-of-the-art
authorship obfuscation methods are not stealthy.
We showed that the degradation in text smooth-
ness caused by authorship obfuscators allow a
detector to distinguish between obfuscated doc-
uments and original documents. Our proposed
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Figure 4: Comparison between different obfuscators
and original documents on the basis of average sorted
probabilities extracted by BERT BASE for EBG obfus-
cated dataset.

obfuscation detectors were effective at classify-
ing obfuscated and evaded documents (F1 score
as high as 0.92 and 0.95, respectively). Our find-
ings point to future research opportunities to build
stealthy authorship obfuscation methods. We sug-
gest that obfuscation methods should strive to pre-
serve text smoothness in addition to semantics.
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