@inproceedings{kurita-etal-2020-weight,
title = "Weight Poisoning Attacks on Pretrained Models",
author = "Kurita, Keita and
Michel, Paul and
Neubig, Graham",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.249/",
doi = "10.18653/v1/2020.acl-main.249",
pages = "2793--2806",
abstract = "Recently, NLP has seen a surge in the usage of large pre-trained models. Users download weights of models pre-trained on large datasets, then fine-tune the weights on a task of their choice. This raises the question of whether downloading untrusted pre-trained weights can pose a security threat. In this paper, we show that it is possible to construct {\textquotedblleft}weight poisoning{\textquotedblright} attacks where pre-trained weights are injected with vulnerabilities that expose {\textquotedblleft}backdoors{\textquotedblright} after fine-tuning, enabling the attacker to manipulate the model prediction simply by injecting an arbitrary keyword. We show that by applying a regularization method which we call RIPPLe and an initialization procedure we call Embedding Surgery, such attacks are possible even with limited knowledge of the dataset and fine-tuning procedure. Our experiments on sentiment classification, toxicity detection, and spam detection show that this attack is widely applicable and poses a serious threat. Finally, we outline practical defenses against such attacks."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kurita-etal-2020-weight">
<titleInfo>
<title>Weight Poisoning Attacks on Pretrained Models</title>
</titleInfo>
<name type="personal">
<namePart type="given">Keita</namePart>
<namePart type="family">Kurita</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Michel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Graham</namePart>
<namePart type="family">Neubig</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recently, NLP has seen a surge in the usage of large pre-trained models. Users download weights of models pre-trained on large datasets, then fine-tune the weights on a task of their choice. This raises the question of whether downloading untrusted pre-trained weights can pose a security threat. In this paper, we show that it is possible to construct “weight poisoning” attacks where pre-trained weights are injected with vulnerabilities that expose “backdoors” after fine-tuning, enabling the attacker to manipulate the model prediction simply by injecting an arbitrary keyword. We show that by applying a regularization method which we call RIPPLe and an initialization procedure we call Embedding Surgery, such attacks are possible even with limited knowledge of the dataset and fine-tuning procedure. Our experiments on sentiment classification, toxicity detection, and spam detection show that this attack is widely applicable and poses a serious threat. Finally, we outline practical defenses against such attacks.</abstract>
<identifier type="citekey">kurita-etal-2020-weight</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.249</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.249/</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>2793</start>
<end>2806</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Weight Poisoning Attacks on Pretrained Models
%A Kurita, Keita
%A Michel, Paul
%A Neubig, Graham
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F kurita-etal-2020-weight
%X Recently, NLP has seen a surge in the usage of large pre-trained models. Users download weights of models pre-trained on large datasets, then fine-tune the weights on a task of their choice. This raises the question of whether downloading untrusted pre-trained weights can pose a security threat. In this paper, we show that it is possible to construct “weight poisoning” attacks where pre-trained weights are injected with vulnerabilities that expose “backdoors” after fine-tuning, enabling the attacker to manipulate the model prediction simply by injecting an arbitrary keyword. We show that by applying a regularization method which we call RIPPLe and an initialization procedure we call Embedding Surgery, such attacks are possible even with limited knowledge of the dataset and fine-tuning procedure. Our experiments on sentiment classification, toxicity detection, and spam detection show that this attack is widely applicable and poses a serious threat. Finally, we outline practical defenses against such attacks.
%R 10.18653/v1/2020.acl-main.249
%U https://aclanthology.org/2020.acl-main.249/
%U https://doi.org/10.18653/v1/2020.acl-main.249
%P 2793-2806
Markdown (Informal)
[Weight Poisoning Attacks on Pretrained Models](https://aclanthology.org/2020.acl-main.249/) (Kurita et al., ACL 2020)
ACL
- Keita Kurita, Paul Michel, and Graham Neubig. 2020. Weight Poisoning Attacks on Pretrained Models. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 2793–2806, Online. Association for Computational Linguistics.