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Abstract

In recent years, a new interesting task, called
emotion-cause pair extraction (ECPE), has e-
merged in the area of text emotion analysis.
It aims at extracting the potential pairs of e-
motions and their corresponding causes in a
document. To solve this task, the existing re-
search employed a two-step framework, which
first extracts individual emotion set and cause
set, and then pair the corresponding emotion-
s and causes. However, such a pipeline of t-
wo steps contains some inherent flaws: 1) the
modeling does not aim at extracting the final
emotion-cause pair directly; 2) the errors from
the first step will affect the performance of
the second step. To address these shortcom-
ings, in this paper we propose a new end-to-
end approach, called ECPE-Two-Dimensional
(ECPE-2D), to represent the emotion-cause
pairs by a 2D representation scheme. A 2D
transformer module and two variants, window-
constrained and cross-road 2D transformers,
are further proposed to model the interaction-
s of different emotion-cause pairs. The 2D
representation, interaction, and prediction are
integrated into a joint framework. In addi-
tion to the advantages of joint modeling, the
experimental results on the benchmark emo-
tion cause corpus show that our approach im-
proves the F1 score of the state-of-the-art from
61.28% to 68.89%.

1 Introduction

Emotion cause extraction (ECE), as a sub-task of
emotion analysis, aims at extracting the potential
causes of certain emotion expressions in text. The
ECE task was first proposed by Lee et al. (2010)
and defined as a word-level sequence labeling prob-
lem. Gui et al. (2016a) released a new corpus and
re-formalized the ECE task as a clause-level ex-
traction problem. Given an emotion annotation,
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the goal of ECE is to predict for each clause in a
document if the clause is an emotion cause. This
framework has received much attention in the fol-
lowing studies in this direction. Although the ECE
task was well defined, it has two problems: Firstly,
the emotion must be annotated manually before
cause extraction, which greatly limits its practical
application; Secondly, the way to first annotate the
emotion and then extract the causes ignores the fact
that emotions and causes are mutually indicative.
To address this problem, we have proposed a new
task named emotion-cause pair extraction (ECPE),
aiming to extract the potential pairs of emotion-
s and their corresponding causes together in our
previous work (Xia and Ding, 2019).

Specifically, ECPE is defined as a fine-grained
emotion analysis task, where the goal is to extract a
set of valid emotion-cause pairs, given a document
consisting of multiple clauses as the input. Figure 1
(a) shows an example of the ECPE task. The in-
put in this example is a document consisting of six
clauses. Clause c4 contains a “happy” emotion and
it has two corresponding causes: clause c2 (“a po-
liceman visited the old man with the lost money”),
and clause c3 (“told him that the thief was caught”).
Clause c5 contains a “worried” emotion and the
corresponding cause is clause c6 (“as he doesn’t
know how to keep so much money”). The final
output is a set of valid emotion-cause pairs defined
at clause level: {c4-c2, c4-c3, c5-c6}. We have
also proposed a two-step approach (ECPE-2Steps)
to address the ECPE task (Xia and Ding, 2019).
ECPE-2Steps is a pipeline of two steps: Step 1 ex-
tracts an emotion set and a cause set individually.
For example in Figure 1 (a), the emotion set is {c4,
c5} and the cause set is {c2, c3, c6}; Step 2 con-
ducts emotion-cause pairing and filtering based on
the outputs of Step 1. As shown in Figure 1 (a),
it first gets the candidate emotion-cause pairs by
applying a Cartesian product to the emotion set and
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All possible Emotion-Cause Pairs: {c4-c2, c4-c3, c4-c6, c5-c2, c5-c3, c5-c6}

Valid Emotion-Cause Pairs: {c4-c2, c4-c3, c4-c6, c5-c2, c5-c3, c5-c6}

Step 2 - Filtering

c1: Yesterday morning, 
c2: a policeman visited the old man with the lost money, 
c3: and told him that the thief was caught. 
c4: The old man was very happy. 
c5: But he still feels worried, 
c6: as he doesn’t know how to keep so much money.

Emotion set: {c4, c5}

Cause set: {c2, c3, c6}

Step 2 - Pairing

Step 1

(a) ECPE-2Step (Xia and Ding, 2019)

c1-c3 c1-c4 c1-c5c1-c2c1-c1 c1-c6

c2-c3 c2-c4 c2-c5c2-c2c2-c1 c2-c6

c3-c3 c3-c4 c3-c5c3-c2c3-c1 c3-c6

c4-c3 c4-c4 c4-c5c4-c2c4-c1 c4-c6

c6-c3 c6-c4 c6-c5c6-c2c6-c1 c6-c6

c5-c3 c5-c4 c5-c5c5-c2c5-c1 c5-c6

Cause clause

Em
o

tio
n

clau
se

(b) ECPE-2D (Our approach)

Figure 1: An example showing two frameworks for solving the emotion-cause pair extraction (ECPE) task.

cause set, and then train an independent filter to
remove the invalid pairs.

Although the ECPE-2Steps approach seems rea-
sonable and performs well, it still has the following
shortcomings: (1) as a pipeline of two separate
steps, ECPE-2Steps requires two prediction steps
to get the final emotion-cause pair. The training of
the model is also not directly aimed at extracting
the final emotion-cause pair. (2) The errors from
Step 1 will affect the performance of Step 2. For
one thing, the upper bound of the recall in Step 2
is determined by the recall in Step 1, because Step
2 cannot produce emotion-cause pairs from the e-
motions or causes that were not extracted by Step
1; for another, if Step 1 predicts too many incorrect
emotions or causes, the precision of Step 2 will be
reduced.

To address these problems, in this work we
propose a new end-to-end ECPE solution, called
ECPE-Two-Dimensional (ECPE-2D), to represen-
t the emotion-cause pairs by a 2D representation
scheme, and integrate the emotion-cause pair rep-
resentation, interaction and prediction into a
joint framework. As shown in Figure 1 (b), firstly,
we design a 2D representation scheme to represent
the emotion-cause pairs in forms of a square matrix,
where each item represents an emotion-cause pair.
Secondly, a 2D Transformer framework and its t-
wo variants, window-constrained and cross-road
2D transformers, are further proposed to capture
the interaction between different emotion-cause
pairs. Finally, we extract the valid emotion-cause
pairs based on the 2D representation by conduct-
ing a binary classification on each emotion-cause
pair. These three parts are integrated into a unified
framework and trained simultaneously.

We evaluate our ECPE-2D approach on the

benchmark emotion cause corpus. The experimen-
tal results prove that ECPE-2D can obtain over-
whelmingly better results than the state-of-the-art
methods on the emotion-cause pair extraction task
and two auxiliary tasks (emotion extraction and
cause extraction).

2 Approach

2.1 Overall Architecture

Following our prior work (Xia and Ding, 2019),
we formalize the emotion-cause pair extraction
(ECPE) task as follows. The input is a document
consisting of multiple clauses d = [c1, c2, · · · , c|d|],
the goal of ECPE is to extract a set of emotion-
cause pairs in d:

P = {· · · , cemo-ccau, · · ·}, (1)

where cemo is an emotion clause and ccau is the
corresponding cause clause.

The overall architecture of the proposed method
is shown in Figure 2. It consists of three parts:
1) 2D Emotion-Cause Pair Representation; 2) 2D
Emotion-Cause Pair Interaction; 3) 2D Emotion-
Cause Pair Prediction. Firstly, an individual emo-
tion/cause encoding component is firstly employed
to obtain the emotion-specific representation vec-
tors and cause-specific representation vectors. A
full pairing component is applied to pair the two
representation vectors into a 2D representation ma-
trix. Then a 2D transformer module is proposed to
model the interactions between different emotion-
cause pairs. For each emotion-cause pair in the
matrix, the updated representation is finally fed to
a softmax layer to predict if the pair is valid or
not. The three modules are integrated into a unified
framework and trained simultaneously.
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Figure 2: Overview of the proposed joint framework for emotion-cause pair extraction.

2.2 2D Emotion-Cause Pair Representation
2.2.1 Individual Emotion/Cause Encoding
The purpose of the clause encoder layer is to gener-
ate an emotion-specific representation and a cause-
specific representation for each clause in a docu-
ment. The input is a document contains multiple
clauses: d = [c1, c2, · · · , c|d|], and each clause also
contains multiple words ci = [wi,1, wi,2, ..., wi,|ci|].
A hierarchical neural network which contains two
layers is employed to capture such a word-clause-
document structure.

The lower layer consists of a set of word-level
Bi-LSTM modules, each of which corresponds to
one clause and accumulate the context information
for each word of the clause. The hidden state of the
j-th word in the i-th clause hi,j is obtained based
on a bi-directional LSTM. An attention mechanism
is then adopted to get the clause representation si.

The upper layer is composed of two independent
components, with the goal to generate an emotion-
specific representation remo

i and a cause-specific
representation rcau

i for each clause, respectively.
Both components take the clause representation
(s1, s2, , s|d|) as input and use two clause-level Bi-
LSTMs to obtain remo

i and rcau
i , respectively. Fi-

nally, remo
i and rcau

i are respectively feed into two
softmax layers to get the emotion prediction ŷemo

i

and cause prediction ŷcau
i :

ŷemo
i = softmax(Wemoremo

i + bemo), (2)

ŷcau
i = softmax(Wcaurcau

i + bcau). (3)

It should be noted that the individual emo-
tion/cause encoder here is a compatible module.

Other emotion/cause encoder such as Inter-CE,
Inter-EC (Xia and Ding, 2019), and BERT (Devlin
et al., 2019) can also be used. We will compare and
discuss them in the experiments.

2.2.2 Emotion-Cause Full Pairing
In contrast to the ECPE-2Steps approach (Xia and
Ding, 2019) which only extract pairs from the in-
dividual emotion set and cause set, we consider all
possible pairs of clauses in d as candidates. As-
suming the length of the document is |d|, then all
possible pairs form a matrix M of the shape |d|∗|d|,
where the rows and columns represent the index
of the emotion clause and the cause clause in the
document, respectively. cemo

i -ccau
j is the element

in the i-th row and the j-th column of M and in-
dicates the emotion-cause pair that consists of the
i-th clause and the j-th clause, encoded as:

Mi,j = remo
i ⊕ŷemo

i ⊕rcau
j ⊕ŷcau

j ⊕rpei,j , (4)

where remo
i and ŷemo

i are emotion-specific repre-
sentation and emotion prediction of the i-th clause
ci, rcau

j and ŷcau
j are cause-specific representation

and cause prediction of the j-th clause cj . rpei,j is
a relative position embedding vector of cj relative
to ci.

2.3 2D Emotion-Cause Pair Interaction
In the previous section, we have obtained a 2D
representation matrix consisting of all possible
emotion-cause pairs. Each element of the matrix
represents a specific emotion-cause pair.

Considering that a document of length |d| will
generate |d| ∗ |d| possible emotion-cause pairs, a-
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(b) Cross-road 2D transformer.

2D Self attention

Figure 3: Two simplified versions of 2D transformer for emotion-cause pair interaction.

mong which only a very small number of pairs are
positive samples. Using the independent pair repre-
sentation for emotion-cause pair prediction will not
take advantage of this global information. There-
fore, we further designed a 2D transformer for the
ECPE task to effectively achieve the interaction
between emotion-cause pairs.

2.3.1 Standard 2D Transformer
The standard 2D transformer (Vaswani et al., 2017)
consists of a stack of N layers. Each layer consists
of two sublayers: a multi-head 2D self-attention
mechanism followed by a position-wise feed for-
ward network.

Multi-head 2D Self-attention. The multi-head
2D self-attention mechanism first calculates the
query vector qi,j , key vector ki,j and value vector
vi,j for each pair cemo

i -ccau
j in the document d as :

qi,j = Relu(Mi,jWQ), (5)

ki,j = Relu(Mi,jWK), (6)

vi,j = Relu(Mi,jWV ), (7)

where WQ ∈ Rn×n, WK ∈ Rn×n, WV ∈ Rn×n

are parameters for queries, keys and values respec-
tively.

For each pair cemo
i -ccau

j , a set of weights βi,j =
{βi,j,1,1, βi,j,1,2, · · · , βi,j,|d|,|d|)} are learned:

βi,j,a,b =
exp(

qi,j · ka,b√
n

)∑
a′

∑
b′ exp(

qi,j · ka
′
,b
′

√
n

)

. (8)

Then the new feature representation of cemo
i -ccau

j

is obtained by considering all the |d| ∗ |d| pairs in

M:

ẑi,j =

|d|∑
a=1

|d|∑
b=1

βi,j,a,b · va,b. (9)

Position-wise Feed Forward Network. In ad-
dition to the attention sublayer, a position-wise feed
forward network is applied to each pair separately
and identically:

ôi,j = max(0, zi,jW1 + b1)W2 + b2. (10)

It should be noted that both of the above two sub-
layers use the residual connection followed by nor-
malization layer at its output:

zi,j = Normalize(ẑi,j + Mi,j), (11)

oi,j = Normalize(ôi,j + zi,j). (12)

As has mentioned, the standard 2D transformer
consists of a stack of N layers. Let l denotes the
index of transformer layers. The output of the pre-
vious layer will be used as the input of the next
layer:

M(l+1)
i,j = o(l)i,j . (13)

Computational inefficiency. Since the outputs
of the standard transformer are |d| ∗ |d| elements,
each element requires the calculation of |d| ∗ |d| at-
tention weights, and eventually (|d|∗|d|)∗(|d|∗|d|)
weights are needed to be calculated and temporari-
ly stored. To alleviate the computational load, we
furthermore propose two variants of the standard
2D Transformer in the following two subsection-
s: 1) window-constrained 2D Transformer and 2)
cross-road 2D Transformer, as shown in Figure 3.
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2D transformer Time complexity Space complexity
Standard O(batch ∗ |d| ∗ |d| ∗ n ∗ (|d| ∗ |d|+ n)) O(batch ∗ |d| ∗ |d| ∗ (|d| ∗ |d|+ n))

Window-constrained O(batch ∗ |d| ∗ w ∗ n ∗ (|d| ∗ w + n)) O(batch ∗ |d| ∗ w ∗ (|d| ∗ w + n))
Cross-road O(batch ∗ |d| ∗ |d| ∗ n ∗ (|d|+ n)) O(batch ∗ |d| ∗ |d| ∗ (|d|+ n))

Table 1: Comparison of three kinds of 2D transformer in resource consumption. batch indicates the batch size
during training, |d| indicates the number of clauses in the document, n refers to the hidden state size, w is equal to
2 ∗ window + 1, and window is the window size used in window-constrained 2D transformer.

(a) (b) (c)

Figure 4: Examples of attentions to be calculated in
three 2D Transformers: (a) Standard 2D-Transformer,
(b) Window-constrained 2D Transformer, and (c)
Cross-road 2D Transformer.

2.3.2 Window-constrained 2D Transformer
Considering that most of the cause claus-
es are around the emotion clauses, we pro-
pose the window-constrained 2D transformer,
which is a standard 2D transformer while on-
ly takes cemo

i -ccau
j that meets j − i ∈

[−window,window] as inputs.
The outputs of the window-constrained 2D trans-

former are |d| ∗ (window ∗ 2 + 1) elements, each
element requires the calculation of |d| ∗ (window ∗
2 + 1) attention weights, and eventually (|d| ∗
(window∗2+1))∗(|d|∗(window∗2+1)) weights
are needed to be calculated and temporarily stored.

It should be noted that compared to the stan-
dard 2D transformer, the window-constrained trans-
former not only greatly reduces the resource re-
quirements, but also alleviates the class imbalance
problem to some extent since most of the pairs out
of the windows are negative samples.

2.3.3 Cross-road 2D Transformer
Since the feature representation of pairs in the same
row or column tends to be closer, we believe that
pairs in the same row and column with the curren-
t pair have a greater impact on the current pair.
Therefore, we propose the cross-road 2D trans-
former, in which the multi-head 2D self-attention
mechanism is replaced by the cross-road 2D self-
attention, and the other parts remain the same.

In the cross-road 2D self-attention, we cal-
culate a set of row-wise weights βrow

i,j =
{βrow

i,j,1 , β
row
i,j,2 , · · · , βrow

i,j,|d|)} and a set of column-

wise weights βcol
i,j = {βcol

i,j,1, β
col
i,j,2, · · · , βcol

i,j,|d|)}
for each pair cemo

i -ccau
j :

βrow
i,j,b =

exp(
qi,j · ki,b√

n
)∑

b′ exp(
qi,j · ki,b

′
√
n

)

, (14)

βcol
i,j,a =

exp(
qi,j · ka,j√

n
)∑

a′ exp(
qi,j · ka

′
,j√

n
)

. (15)

Then the new feature representation of
cemo
i -ccau

j is obtained by considering the pairs in
the same row and column with it:

ẑi,j = (

|d|∑
b=1

βrow
i,j,b · vi,b +

|d|∑
a=1

βcol
i,j,a · va,j)/2. (16)

The outputs of the cross-road 2D transformer
are |d| ∗ |d| elements, each element requires the
calculation of (|d| + |d|) attention weights, and
eventually (|d| ∗ |d|) ∗ (|d| ∗ 2) weights are needed
to be calculated and temporarily stored.

In this way, the new representation of each pair
cemo
i -ccau

j can encode the information on all the
pairs in the same row and column. In addition, if
the cross-road 2D transformer is performed twice
or more, the feature representation of each pair can
encode the global information on all the pairs in M,
while standard 2D transformer requires much more
resource to achieve this.

We show an example of attentions to be calcu-
lated for standard, window-constrained, and cross-
road 2D transformer in Figure 4 (a), (b), and (c),
respectively, and summarize their resource con-
sumption in Table 1.

2.4 2D Emotion-Cause Pair Prediction

After a stack of N 2D transformer layers, we
can get the final representation o(N)

i,j for each pair
cemo
i -ccau

j , and predict the emotion-cause pair dis-

tribution ŷpair
i,j as follows:
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ŷpair
i,j = softmax(Wpairo(N)

i,j + bpair). (17)

The loss of emotion-cause pair classification for
a document d is:

Lpair = −
|d|∑
i=1

|d|∑
j=1

ypair
i,j · log(ŷpair

i,j ), (18)

where ypair
i,j is the ground truth distribution of

emotion-cause pair of cemo
i -ccau

j .
In order to get better emotion-specific represen-

tation and cause-specific representation, we intro-
duce the auxiliary loss for emotion prediction and
cause prediction:

Laux = −
|d|∑
i=1

yemo
i ·log(ŷemo

i )−
|d|∑
i=1

ycau
i ·log(ŷcau

i ),

(19)
where yemo

i and ycau
i are emotion and cause an-

notation of clause ci, respectively. The final loss
of our model for a document d is a weighted sum
of Lpair and Laux with L2-regularization term as
follows:

L = λ1L
pair + λ2L

aux + λ3||θ||2, (20)

where λ1, λ2, λ3 ∈ (0, 1) are weights, θ denotes
all the parameters in this model.

3 Experiments

3.1 Dataset and Metrics

We evaluated our proposed model on an ECPE
corpus from (Xia and Ding, 2019), which was con-
structed based on a Chinese emotion cause corpus
(Gui et al., 2016a). The same as (Xia and Ding,
2019), we stochastically select 90% of the data as
training data and the remaining 10% as testing da-
ta. In order to obtain statistically credible results,
we repeat the experiments 20 times and report the
average result. The precision, recall, and F1 score
defined in (Xia and Ding, 2019) are used as the
metrics for evaluation.

In addition, we also evaluated the performance
of two sub-tasks: emotion extraction and cause
extraction, using the precision, recall, and F1 score
defined in (Gui et al., 2016a) as the metrics.

3.2 Experimental Settings

We use word vectors provided by (Xia and Ding,
2019) that were pre-trained on a corpora from Chi-
nese Weibo. The dimensions of word embedding
and relative position embedding are set to 200 and
50, respectively. The number of hidden units in
BiLSTM for all our models is set to 100. The di-
mension of the hidden states, query, key, and value
in the transformer are all set to 30. The window
size in the window-constrained 2D transformer is
set to 3. All weight matrixes and bias are randomly
initialized by a uniform distribution U(0.01, 0.01).

For training details, we use the stochastic gra-
dient descent (SGD) algorithm and Adam update
rule with shuffled minibatch. The batch size and
learning rate are set to 32 and 0.005, respectively.
As for regularization, dropout is applied for word
embeddings and the dropout rate is set to 0.7. The
weights λ1, λ2, λ3 in formula 20 are set to 1, 1, 1e-
5, respectively. The code has been made publicly
available on Github1.

3.3 Overall Performance

Table 2 shows the experimental results of our mod-
els and baseline methods on the ECPE task as well
as two subtasks (emotion extraction and cause ex-
traction).

ECPE-2Steps is a set of two-step pipeline meth-
ods proposed in our prior work (Xia and Ding,
2019), which first perform individual emotion ex-
traction and cause extraction via multi-task learn-
ing, and then conduct emotion-cause pairing and
filtering. Specifically, there are three kinds of multi-
task learning settings:

1) Indep: It is an independent multi-task learning
method, in which emotion extraction and cause
extraction are independently modeled.

2) Inter-CE: It is an interactive multi-task learning
method, in which the predictions of cause ex-
traction are used to improve emotion extraction.

3) Inter-EC: It is another interactive multi-task
learning method, in which the predictions of
emotion extraction are used to enhance cause
extraction.

ECPE-2D is a joint framework proposed in this
paper, which integrates the 2D emotion-cause pair
representation, interaction, and prediction in an

1https://github.com/NUSTM/ECPE-2D
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Framework Approach Emotion-Cause Pair Ext. Emotion Ext. Cause Ext.
P R F1 P R F1 P R F1

ECPE- Indep 68.32 50.82 58.18 83.75 80.71 82.10 69.02 56.73 62.05

2Steps Inter-CE 69.02 51.35 59.01 84.94 81.22 83.00 68.09 56.34 61.51
Inter-EC 67.21 57.05 61.28 83.64 81.07 82.30 70.41 60.83 65.07

ECPE-2D

Indep
- 71.60 55.95 62.63 86.32 81.52 83.80 69.15 59.72 63.97

+WC 69.01 59.58 63.80 85.08 81.82 83.35 71.57 59.08 64.64

(Ours)

+CR 69.12 58.78 63.38 85.27 81.82 83.44 69.73 59.37 63.99

Inter-CE
- 69.35 57.24 62.61 86.12 82.40 84.16 69.77 59.42 63.98

+WC 68.62 58.70 63.18 84.97 82.58 83.70 69.24 59.15 63.65
+CR 69.22 59.04 63.56 84.82 82.88 83.76 69.80 58.78 63.68

Inter-EC
- 71.73 57.54 63.66 85.37 81.97 83.54 71.51 62.74 66.76

+WC 71.18 59.84 64.94 85.11 82.37 83.65 71.33 62.85 66.72
+CR 69.60 61.18 64.96 85.12 82.20 83.58 72.72 62.98 67.38

Inter-EC - 70.73 64.86 67.47 86.22 91.82 88.88 73.46 68.79 70.96

(BERT) +WC 72.92 65.44 68.89 86.27 92.21 89.10 73.36 69.34 71.23
+CR 69.35 67.85 68.37 85.48 92.44 88.78 72.72 69.27 70.87

Table 2: Performance of our models and baseline models (Xia and Ding 2019) using precision, recall, and F1-
measure as metrics on the ECPE task as well as the two sub-tasks.

end-to-end fashion. We explored three individual
emotion/cause encoding settings: Indep, Inter-CE
and Inter-EC, and three emotion-cause pair interac-
tion settings:

1) “-” indicates that we do not introduce emotion-
cause pair interaction;

2) “+WC” indicates that we use the window-
constrained 2D transformer for emotion-cause
pair interaction;

3) “+CR” indicates that we use the cross-road 2D
transformer for emotion-cause pair interaction;

Note that due to the limitations of GPU memory,
we have not been able to perform experiments with
Standard 2D Transformer.

First of all, it can be seen that our proposed
model ECPE-2D (Inter-EC+WC) performs better
than ECPE-2Step on all metrics of all tasks, which
proves the effectiveness of our method.

On the ECPE task, ECPE-2Steps (Inter-EC) per-
forms best among all the previous methods. Com-
pared with ECPE-2Steps (Indep), the improvement
of ECPE-2Steps (Inter-EC) is mainly on the recall
rate, while the precision score is slightly reduced.
On the basis of ECPE-2Steps (Inter-EC), the recall
rate of ECPE-2D (Inter-EC+CR) has been further
greatly improved, and the precision score has also
been slightly improved, which ultimately leads to
better performance on the F1 score.

On the emotion extraction and cause extrac-
tion subtasks, ECPE-2Steps (Inter-CE) and ECPE-
2Steps (Inter-EC) achieves significant improve-
ments compared to ECPE-2Steps (Indep) on the

former and latter subtask respectively by leveraging
the interaction between emotion and cause. While
our method ECPE-2D (Inter-EC+CR) outperforms
the previous methods on both subtasks. We at-
tribute the improvements to multi-task learning, as
compared to the ECPE-2Steps (Inter-EC) model,
ECPE-2D (Inter-EC+CR) additionally introduces
the emotion-cause pair extraction task and trains
the three tasks in a unified framework.

In addition, we also explored the effect of using
BERT2 (Devlin et al., 2019) as clause encoder in
Inter-EC, which is denoted as Inter-EC (BERT).
The experimental results in Table 2 show that the
performance on all tasks can be further greatly im-
proved (especially, the state-of-the-art F1 score
on the ECPE task is improved from 61.28% to
68.89%) by adopting BERT as clause encoder.

3.4 ECPE-2D vs. ECPE-2Steps
In order to verify the effect of our proposed join-
t framework ECPE-2D, we discard the emotion-
cause pair interaction module and compare ECPE-
2D models with ECPE-2Step models based on the
same individual encoding setting, the results are
shown in Table 2.

By comparing ECPE-2D (Indep) with ECPE-
2Step (Indep), we find that the performance of
ECPE-2D (Indep) on all the metrics of all tasks
(especially the ECPE task) are significantly im-
proved. On the ECPE task, the performance of
ECPE-2D (Indep) is even better than ECPE-2D

2BERT is only used to replace the word-level Bi-LSTM.
Specifically, each clause in the document is feed into the BERT
model independently, and the final hidden state of ”[CLS]” is
used as the clause representation. Our model is built based on
this implementation: https://github.com/google-research/bert.
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(Inter-EC), which is the prior state-of-the-art mod-
el. On the two subtasks, the performance has also
been improved. We attribute the improvements
to multi-task learning, as compared to the ECPE-
2Step (Indep) model, ECPE-2D (Indep) addition-
ally introduces the emotion-cause pair extraction
task.

By comparing ECPE-2D (Inter-CE) and ECPE-
2D (Inter-EC) with their two-step pipeline ver-
sions (ECPE-2Step (Inter-CE) and ECPE-2Step
(Inter-EC)), we can draw similar conclusions. All
these results prove that the proposed joint frame-
work ECPE-2D is superior to the two-step pipeline
framework ECPE-2Step in solving the ECPE task.

3.5 The Effectiveness of 2D Transformer
Comparing with the ECPE-2D (Indep) model, the
ECPE-2D (Indep+WC/CR) models can achieve fur-
ther improvement on the ECPE task, while the
improvement on the two subtasks are not signif-
icant. Similar conclusions can be drawn when
comparing ECPE-2D (Inter-CE) and ECPE-2D
(Inter-CE+WC/CR) as well as ECPE-2D(Inter-
EC) and ECPE-2D(Inter-EC+WC/CR). Particu-
larly, compared to the strong baseline ECPE-2D
(Inter-EC(BERT)), the performance can still be im-
proved by introducing two kinds of 2D transform-
ers. These results demonstrate that the window-
constrained and cross-road 2D transformer can ef-
fectively improve the performance on the ECPE
task via encoding interactive information between
pairs.

In addition, we found that for ECPE-2D
(Indep/Inter-CE/Inter-EC/Inter-EC(BERT)), the
improvements brought by the introduction of
window-constrained and cross-road 2D transformer
are similar. These results indicate that the two 2D
transformers are comparable.

3.6 The Effectiveness of Auxiliary
Supervision

In order to explore the impact of the auxiliary su-
pervision of two subtasks (emotion extraction and
cause extraction) on the final performance of the
ECPE task, we design the experiments in Table 3.
“-AS” denotes the auxiliary supervision is removed
(in practice, we set λ2 in formula (20) to 0).

Compared with ECPE-2D (Indep/Inter-CE/Inter-
EC), we find that the F1 score of ECPE-2D
(Indep/Inter-CE/Inter-EC)-AS on the ECPE task
decreased by about 1.4%, 2.2%, and 2.6%, respec-
tively, which indicates that the supervisions of emo-

Emotion-Cause Pair Ext.
P R F1

Indep-AS 67.26 56.46 61.24
Indep+WC-AS 68.87 59.78 63.86
Indep+CR-AS 67.48 60.66 63.76
Inter-CE-AS 68.36 54.40 60.42

Inter-CE+WC-AS 67.12 60.79 63.44
Inter-CE+CR-AS 67.28 61.08 63.85

Inter-EC-AS 66.46 56.69 61.08
Inter-EC+WC-AS 67.79 60.47 63.81
Inter-EC+CR-AS 69.26 60.06 64.17

Table 3: Performance of our models on the ECPE task
when the auxiliary supervisions of emotion extraction
and cause extraction are removed. For brevity, the pre-
fix ”ECPE-2D” of all methods in this table are omitted.

tion extraction and cause extraction are important
for the ECPE task. Nevertheless, the results of
ECPE-2D (Indep)-AS are still better than ECPE-
2Step (Indep) and comparable to the prior state-
of-the-art result, which shows that emotion-cause
pair extraction can be performed individually and
proves the effectiveness of our joint framework.

Compared with ECPE-2D (Inter-EC+WC/+CR),
the F1 score of ECPE-2D (Inter-EC+WC/+CR)-
AS on the ECPE task decreased by about 1.1%
and 0.8%, which is much less than the decrease
between ECPE-2D (Inter-EC) and ECPE-2D (Inter-
EC)-AS (drops 2.6%). These results lead to the
conclusion that the negative impact of removing
auxiliary supervision is reduced when pairwise
encoders are introduced. From another perspec-
tive, when auxiliary supervisions are removed, the
improvement brought by introducing pairwise en-
coders is greater. Comparing ECPE-2D (Inter-
CE+WC/+CR), ECPE-2D (Indep+WC/+CR) and
their ”-AS” versions leads to similar conclusions.
The above results again demonstrate the effective-
ness of the proposed 2D transformer.

4 Related Work

The emotion-cause pair extraction (ECPE) task was
first proposed in our prior work (Xia and Ding,
2019) and is derived from the traditional emotion
cause extraction (ECE) task. Since the ECPE task
was recently proposed, there is little work on it. We
mainly introduce the related work of ECE task.

The emotion cause extraction (ECE) task was
first proposed by Lee et al. (2010), with the goal
to extract the word-level causes that lead to the
given emotions in text. Based on the same task set-
tings, there were some other individual studies that
conducted ECE research on their own corpus us-
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ing rule-based methods (Neviarouskaya and Aono,
2013; Li and Xu, 2014; Gao et al., 2015a,b; Yada
et al., 2017) or machine learning methods (Ghazi
et al., 2015; Song and Meng, 2015).

Based on the analysis of the corpus in (Lee et al.,
2010), Chen et al. (2010) suggested that a clause
may be the most appropriate unit to detect causes
and transformed the task from word-level to clause-
level. There was also some work based on this
task setting (Russo et al., 2011; Gui et al., 2014).
Recently, a Chinese emotion cause dataset was re-
leased by (Gui et al., 2016a,b; Xu et al., 2017), and
has received much attention. Based on this corpus,
a lot of traditional machine learning methods (Gui
et al., 2016a,b; Xu et al., 2017) and deep learning
methods (Gui et al., 2017; Li et al., 2018; Yu et al.,
2019; Xu et al., 2019; Ding et al., 2019; Xia et al.,
2019) were proposed.

In addition, there is also some work focused on
cause detection for Chinese microblogs using a
multiple-user structure and formalized two cause
detection tasks for microblogs (current-subtweet-
based cause detection and original-subtweet-based
cause detection). (Cheng et al., 2017; Chen et al.,
2018b,a).

The traditional ECE tasks suffer from two short-
comings: 1) the emotion must be annotated be-
fore cause extraction in ECE, which greatly lim-
its its applications in real-world scenarios; 2) the
way to first annotate emotion and then extract the
cause ignores the fact that they are mutually in-
dicative. To address this problem, we proposed
the new emotion-cause pair extraction task in (Xia
and Ding, 2019), which aims to extract the poten-
tial pairs of emotions and corresponding causes in
a document. We have also proposed a two-step
framework, which first extracts individual emo-
tion set and cause set, and then pairs the corre-
sponding emotions and causes. In this paper, we
propose a new end-to-end approach to represen-
t the emotion-cause pairs by a 2D representation
scheme. Two kinds of 2D transformers, namely
window-constrained and cross-road 2D transform-
ers, are further proposed to model the interactions
of different emotion-cause pairs. Finally, the 2D
representation, interaction, and prediction are inte-
grated into a joint framework.

5 Conclusions

The emotion-cause pair extraction (ECPE) task has
drawn attention recently. However the previous

approach employed a two-step pipeline framework
and has some inherent flaws. In this paper, instead
of a pipeline of two steps, we propose a joint end-
to-end framework, called ECPE-2D, to represent
the emotion-cause pairs by a 2D representation
scheme, and integrate the 2D emotion-cause pair
representation, interaction, and prediction into a
joint a framework. We also develop two kinds of
2D Transformers, i.e., Window-constrained and
Cross-road 2D Transformers, to further model the
interaction of different emotion-cause pairs. The
experimental results on the benchmark emotion
cause corpus demonstrate that in addition to the
advantages of joint modeling, our approach outper-
forms the state-of-the-art method by 7.6 percentage
points in terms of the F1 score on the ECPE task.
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