@inproceedings{zhu-etal-2020-neural-temporal,
title = "Neural Temporal Opinion Modelling for Opinion Prediction on {T}witter",
author = "Zhu, Lixing and
He, Yulan and
Zhou, Deyu",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.352",
doi = "10.18653/v1/2020.acl-main.352",
pages = "3804--3810",
abstract = "Opinion prediction on Twitter is challenging due to the transient nature of tweet content and neighbourhood context. In this paper, we model users{'} tweet posting behaviour as a temporal point process to jointly predict the posting time and the stance label of the next tweet given a user{'}s historical tweet sequence and tweets posted by their neighbours. We design a topic-driven attention mechanism to capture the dynamic topic shifts in the neighbourhood context. Experimental results show that the proposed model predicts both the posting time and the stance labels of future tweets more accurately compared to a number of competitive baselines.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zhu-etal-2020-neural-temporal">
<titleInfo>
<title>Neural Temporal Opinion Modelling for Opinion Prediction on Twitter</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lixing</namePart>
<namePart type="family">Zhu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yulan</namePart>
<namePart type="family">He</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Deyu</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Opinion prediction on Twitter is challenging due to the transient nature of tweet content and neighbourhood context. In this paper, we model users’ tweet posting behaviour as a temporal point process to jointly predict the posting time and the stance label of the next tweet given a user’s historical tweet sequence and tweets posted by their neighbours. We design a topic-driven attention mechanism to capture the dynamic topic shifts in the neighbourhood context. Experimental results show that the proposed model predicts both the posting time and the stance labels of future tweets more accurately compared to a number of competitive baselines.</abstract>
<identifier type="citekey">zhu-etal-2020-neural-temporal</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.352</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.352</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>3804</start>
<end>3810</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Neural Temporal Opinion Modelling for Opinion Prediction on Twitter
%A Zhu, Lixing
%A He, Yulan
%A Zhou, Deyu
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F zhu-etal-2020-neural-temporal
%X Opinion prediction on Twitter is challenging due to the transient nature of tweet content and neighbourhood context. In this paper, we model users’ tweet posting behaviour as a temporal point process to jointly predict the posting time and the stance label of the next tweet given a user’s historical tweet sequence and tweets posted by their neighbours. We design a topic-driven attention mechanism to capture the dynamic topic shifts in the neighbourhood context. Experimental results show that the proposed model predicts both the posting time and the stance labels of future tweets more accurately compared to a number of competitive baselines.
%R 10.18653/v1/2020.acl-main.352
%U https://aclanthology.org/2020.acl-main.352
%U https://doi.org/10.18653/v1/2020.acl-main.352
%P 3804-3810
Markdown (Informal)
[Neural Temporal Opinion Modelling for Opinion Prediction on Twitter](https://aclanthology.org/2020.acl-main.352) (Zhu et al., ACL 2020)
ACL