@inproceedings{barkan-etal-2020-bayesian,
title = "{B}ayesian Hierarchical Words Representation Learning",
author = "Barkan, Oren and
Rejwan, Idan and
Caciularu, Avi and
Koenigstein, Noam",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.356",
doi = "10.18653/v1/2020.acl-main.356",
pages = "3871--3877",
abstract = "This paper presents the Bayesian Hierarchical Words Representation (BHWR) learning algorithm. BHWR facilitates Variational Bayes word representation learning combined with semantic taxonomy modeling via hierarchical priors. By propagating relevant information between related words, BHWR utilizes the taxonomy to improve the quality of such representations. Evaluation of several linguistic datasets demonstrates the advantages of BHWR over suitable alternatives that facilitate Bayesian modeling with or without semantic priors. Finally, we further show that BHWR produces better representations for rare words.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="barkan-etal-2020-bayesian">
<titleInfo>
<title>Bayesian Hierarchical Words Representation Learning</title>
</titleInfo>
<name type="personal">
<namePart type="given">Oren</namePart>
<namePart type="family">Barkan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Idan</namePart>
<namePart type="family">Rejwan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Avi</namePart>
<namePart type="family">Caciularu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Noam</namePart>
<namePart type="family">Koenigstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper presents the Bayesian Hierarchical Words Representation (BHWR) learning algorithm. BHWR facilitates Variational Bayes word representation learning combined with semantic taxonomy modeling via hierarchical priors. By propagating relevant information between related words, BHWR utilizes the taxonomy to improve the quality of such representations. Evaluation of several linguistic datasets demonstrates the advantages of BHWR over suitable alternatives that facilitate Bayesian modeling with or without semantic priors. Finally, we further show that BHWR produces better representations for rare words.</abstract>
<identifier type="citekey">barkan-etal-2020-bayesian</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.356</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.356</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>3871</start>
<end>3877</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Bayesian Hierarchical Words Representation Learning
%A Barkan, Oren
%A Rejwan, Idan
%A Caciularu, Avi
%A Koenigstein, Noam
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F barkan-etal-2020-bayesian
%X This paper presents the Bayesian Hierarchical Words Representation (BHWR) learning algorithm. BHWR facilitates Variational Bayes word representation learning combined with semantic taxonomy modeling via hierarchical priors. By propagating relevant information between related words, BHWR utilizes the taxonomy to improve the quality of such representations. Evaluation of several linguistic datasets demonstrates the advantages of BHWR over suitable alternatives that facilitate Bayesian modeling with or without semantic priors. Finally, we further show that BHWR produces better representations for rare words.
%R 10.18653/v1/2020.acl-main.356
%U https://aclanthology.org/2020.acl-main.356
%U https://doi.org/10.18653/v1/2020.acl-main.356
%P 3871-3877
Markdown (Informal)
[Bayesian Hierarchical Words Representation Learning](https://aclanthology.org/2020.acl-main.356) (Barkan et al., ACL 2020)
ACL
- Oren Barkan, Idan Rejwan, Avi Caciularu, and Noam Koenigstein. 2020. Bayesian Hierarchical Words Representation Learning. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 3871–3877, Online. Association for Computational Linguistics.