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Abstract

Pretraining deep language models has led to
large performance gains in NLP. Despite this
success, Schick and Schütze (2020) recently
showed that these models struggle to under-
stand rare words. For static word embeddings,
this problem has been addressed by separately
learning representations for rare words. In
this work, we transfer this idea to pretrained
language models: We introduce BERTRAM, a
powerful architecture based on BERT that is
capable of inferring high-quality embeddings
for rare words that are suitable as input rep-
resentations for deep language models. This is
achieved by enabling the surface form and con-
texts of a word to interact with each other in a
deep architecture. Integrating BERTRAM into
BERT leads to large performance increases
due to improved representations of rare and
medium frequency words on both a rare word
probing task and three downstream tasks.1

1 Introduction

As word embedding algorithms (e.g. Mikolov et al.,
2013) are known to struggle with rare words, sev-
eral techniques for improving their representations
have been proposed. These approaches exploit ei-
ther the contexts in which rare words occur (Lazari-
dou et al., 2017; Herbelot and Baroni, 2017; Kho-
dak et al., 2018; Liu et al., 2019a), their surface-
form (Luong et al., 2013; Bojanowski et al., 2017;
Pinter et al., 2017), or both (Schick and Schütze,
2019a,b; Hautte et al., 2019). However, all of this
prior work is designed for and evaluated on uncon-
textualized word embeddings.

Contextualized representations obtained from
pretrained deep language models (e.g. Peters et al.,
2018; Radford et al., 2018; Devlin et al., 2019; Liu
et al., 2019b) already handle rare words implicitly

1Our implementation of BERTRAM is publicly available at
https://github.com/timoschick/bertram.

using methods such as byte-pair encoding (Sen-
nrich et al., 2016), WordPiece embeddings (Wu
et al., 2016) and character-level CNNs (Baevski
et al., 2019). Nevertheless, Schick and Schütze
(2020) recently showed that BERT’s (Devlin et al.,
2019) performance on a rare word probing task can
be significantly improved by explicitly learning rep-
resentations of rare words using Attentive Mimick-
ing (AM) (Schick and Schütze, 2019a). However,
AM is limited in two important respects:

• For processing contexts, it uses a simple bag-
of-words model, making poor use of the avail-
able information.

• It combines form and context in a shallow
fashion, preventing both input signals from
interacting in a complex manner.

These limitations apply not only to AM, but to all
previous work on obtaining representations for rare
words by leveraging form and context. While using
bag-of-words models is a reasonable choice for
static embeddings, which are often themselves bag-
of-words (e.g. Mikolov et al., 2013; Bojanowski
et al., 2017), it stands to reason that they are not
the best choice to generate input representations
for position-aware, deep language models.

To overcome these limitations, we introduce
BERTRAM (BERT for Attentive Mimicking), a
novel architecture for learning rare word representa-
tions that combines a pretrained BERT model with
AM. As shown in Figure 1, the learned rare word
representations can then be used as an improved
input representation for another BERT model. By
giving BERTRAM access to both surface form and
contexts starting at the lowest layer, a deep integra-
tion of both input signals becomes possible.

Assessing the effectiveness of methods like
BERTRAM in a contextualized setting is challeng-
ing: While most previous work on rare words was

https://github.com/timoschick/bertram
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evaluated on datasets explicitly focusing on rare
words (e.g Luong et al., 2013; Herbelot and Ba-
roni, 2017; Khodak et al., 2018; Liu et al., 2019a),
these datasets are tailored to uncontextualized em-
beddings and thus not suitable for evaluating our
model. Furthermore, rare words are not well repre-
sented in commonly used downstream task datasets.
We therefore introduce rarification, a procedure to
automatically convert evaluation datasets into ones
for which rare words are guaranteed to be impor-
tant. This is achieved by replacing task-relevant
frequent words with rare synonyms obtained using
semantic resources such as WordNet (Miller, 1995).
We rarify three common text (or text pair) classifica-
tion datasets: MNLI (Williams et al., 2018), AG’s
News (Zhang et al., 2015) and DBPedia (Lehmann
et al., 2015). BERTRAM outperforms previous
work on four English datasets by a large margin:
on the three rarified datasets and on WNLaMPro
(Schick and Schütze, 2020).

In summary, our contributions are as follows:

• We introduce BERTRAM, a model that inte-
grates BERT into Attentive Mimicking, en-
abling a deep integration of surface-form and
contexts and much better representations for
rare words.

• We devise rarification, a method that trans-
forms evaluation datasets into ones for which
rare words are guaranteed to be important.

• We show that adding BERTRAM to BERT
achieves a new state-of-the-art on WNLaM-
Pro (Schick and Schütze, 2020) and beats all
baselines on rarified AG’s News, MNLI and
DBPedia, resulting in an absolute improve-
ment of up to 25% over BERT.

2 Related Work

Surface-form information (e.g., morphemes, char-
acters or character n-grams) is commonly used to
improve word representations. For static word em-
beddings, this information can either be injected
into a given embedding space (Luong et al., 2013;
Pinter et al., 2017), or a model can directly be given
access to it during training (Bojanowski et al., 2017;
Salle and Villavicencio, 2018; Piktus et al., 2019).
In the area of contextualized representations, many
architectures employ subword segmentation meth-
ods (e.g. Radford et al., 2018; Devlin et al., 2019;
Yang et al., 2019; Liu et al., 2019b). Others use

riding a un ##ic ##y ##cle is hard

BERT

ariding is hard

BERT

BERTRAMBERTRAM

unicycle

Figure 1: Top: Standard use of BERT. Bottom: Our
proposal; first BERTRAM learns an embedding for “uni-
cycle” that replaces the WordPiece sequence. BERT is
then run on this improved input representation.

convolutional neural networks to directly access
character-level information (Kim et al., 2016; Pe-
ters et al., 2018; Baevski et al., 2019).

Complementary to surface form, another useful
source of information for understanding rare words
are the contexts in which they occur (Lazaridou
et al., 2017; Herbelot and Baroni, 2017; Khodak
et al., 2018). Schick and Schütze (2019a,b) show
that combining form and context leads to signifi-
cantly better results than using just one of the two.
While all of these methods are bag-of-words mod-
els, Liu et al. (2019a) recently proposed an architec-
ture based on context2vec (Melamud et al., 2016).
However, in contrast to our work, they (i) do not
incorporate surface-form information and (ii) do
not directly access the hidden states of context2vec,
but instead simply use its output distribution.

Several datasets focus on rare words, e.g., Stan-
ford Rare Word (Luong et al., 2013), Definitional
Nonce (Herbelot and Baroni, 2017), and Contex-
tual Rare Word (Khodak et al., 2018). However,
unlike our rarified datasets, they are only suitable
for evaluating uncontextualized word representa-
tions. Rarification is related to adversarial example
generation (e.g. Ebrahimi et al., 2018), which ma-
nipulates the input to change a model’s prediction.
We use a similar mechanism to determine which
words in a given sentence are most important and
replace them with rare synonyms.

3 Model

3.1 Form-Context Model
We first review the basis for our new model, the
form-context model (FCM) (Schick and Schütze,
2019b). Given a set of d-dimensional high-quality
embeddings for frequent words, FCM induces em-
beddings for rare words that are appropriate for



3998

the given embedding space. This is done as fol-
lows: Given a word w and a context C in which
it occurs, a surface-form embedding vform

(w,C) ∈ Rd

is obtained by averaging over embeddings of all
character n-grams in w; the n-gram embeddings
are learned during training. Similarly, a context
embedding vcontext

(w,C) ∈ Rd is obtained by averaging
over the embeddings of all words in C. Finally,
both embeddings are combined using a gate

g(vform
(w,C), v

context
(w,C) ) = σ(x>[vform

(w,C); v
context
(w,C) ] + y)

with parameters x ∈ R2d, y ∈ R and σ denoting
the sigmoid function, allowing the model to decide
how to weight surface-form and context. The final
representation of w is then a weighted combination
of form and context embeddings:

v(w,C) = α · (Avcontext
(w,C) + b) + (1− α) · vform

(w,C)

where α = g(vform
(w,C), v

context
(w,C) ) and A ∈ Rd×d, b ∈

Rd are parameters learned during training.
The context part of FCM is able to capture the

broad topic of rare words, but since it is a bag-of-
words model, it is not capable of obtaining a more
concrete or detailed understanding (see Schick and
Schütze, 2019b). Furthermore, the simple gating
mechanism results in only a shallow combination
of form and context. That is, the model is not
able to combine form and context until the very
last step: While it can learn to weight form and
context components, the two embeddings (form
and context) do not share any information and thus
do not influence each other.

3.2 BERTRAM

To overcome these limitations, we introduce
BERTRAM, a model that combines a pretrained
BERT language model (Devlin et al., 2019) with
Attentive Mimicking (Schick and Schütze, 2019a).
We denote with et the (uncontextualized, i.e., first-
layer) embedding assigned to a (wordpiece) token
t by BERT. Given a sequence of such uncontextu-
alized embeddings e = e1, . . . , en, we denote by
hj(e) the contextualized representation of the j-th
token at the final layer when the model is given e
as input.

Given a word w and a context C in which it oc-
curs, let t = t1, . . . , tm be the sequence obtained
from C by (i) replacing w with a [MASK] token
and (ii) tokenization (matching BERT’s vocabu-
lary); furthermore, let i denote the index for which

ti = [MASK]. We experiment with three variants
of BERTRAM: BERTRAM-SHALLOW, BERTRAM-
REPLACE and BERTRAM-ADD.2

SHALLOW. Perhaps the simplest approach for
obtaining a context embedding fromC using BERT
is to define

vcontext
(w,C) = hi(et1 , . . . , etm) .

This approach aligns well with BERT’s pretrain-
ing objective of predicting likely substitutes for
[MASK] tokens from their contexts. The context
embedding vcontext

(w,C) is then combined with its form
counterpart as in FCM.

While this achieves our first goal of using a more
sophisticated context model that goes beyond bag-
of-words, it still only combines form and context
in a shallow fashion.

REPLACE. Before computing the context embed-
ding, we replace the uncontextualized embedding
of the [MASK] token with the word’s surface-form
embedding:

vcontext
(w,C) = hi(et1 , ... , eti−1 , v

form
(w,C), eti+1 , ... , etm) .

Our rationale for this is as follows: During regular
BERT pretraining, words chosen for prediction are
replaced with [MASK] tokens only 80% of the
time and kept unchanged 10% of the time. Thus,
standard pretrained BERT should be able to make
use of form embeddings presented this way as they
provide a strong signal with regards to how the
“correct” embedding of w may look like.

ADD. Before computing the context embedding,
we prepad the input with the surface-form embed-
ding of w, followed by a colon (e:):3

vcontext
(w,C) = hi+2(v

form
(w,C), e:, et1 , . . . , etm) .

The intuition behind this third variant is that lex-
ical definitions and explanations of a word w are
occasionally prefixed by “w :” (e.g., in some on-
line dictionaries). We assume that BERT has seen
many definitional sentences of this kind during pre-
training and is thus able to leverage surface-form
information about w presented this way.

For both REPLACE and ADD, surface-form in-
formation is directly and deeply integrated into the

2We refer to these three BERTRAM configurations simply
as SHALLOW, REPLACE and ADD.

3We experimented with other prefixes, but found that this
variant is best capable of recovering w at the masked position.
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〈S〉was wash . . . les〈S〉

vform
(w,C1)

e[CLS] e: eother e[MASK] esuch eas etrousers . . .

: other [MASK] such as trousers . . .

BERT

A · + b

v(w,C1)

BERTRAM . . . BERTRAM

v(w,C1) . . . v(w,Cm)

(w,C1) . . . (w,Cm)

Attentive Mimicking

v(w,C)

Figure 2: Schematic representation of BERTRAM-ADD processing the input word w = “washables” given a single
context C1 = “other washables such as trousers . . .” (left) and given multiple contexts C = {C1, . . . , Cm} (right)

computation of the context embedding; thus, we
do not require any gating mechanism and directly
set v(w,C) = A · vcontext

(w,C) + b. Figure 2 (left) shows
how a single context is processed using ADD.

To exploit multiple contexts of a word if avail-
able, we follow the approach of Schick and Schütze
(2019a) and add an AM layer on top of our model;
see Figure 2 (right). Given a set of contexts
C = {C1, . . . , Cm} and the corresponding em-
beddings v(w,C1), . . . , v(w,Cm), AM applies a self-
attention mechanism to all embeddings, allowing
the model to distinguish informative from uninfor-
mative contexts. The final embedding v(w,C) is then
a weighted combination of all embeddings:

v(w,C) =
∑m

i=1
ρi · v(w,Ci)

where the self-attention layer determines the
weights ρi subject to

∑m
i=1 ρi = 1. For further

details, see Schick and Schütze (2019a).

3.3 Training

Like previous work, we use mimicking (Pinter et al.,
2017) as a training objective. That is, given a fre-
quent word w with known embedding ew and a set
of corresponding contexts C, BERTRAM is trained
to minimize ‖ew − v(w,C)‖2.

Training BERTRAM end-to-end is costly: the
cost of processing a single training instance (w, C)
with C = {C1, . . . , Cm} is the same as processing
an entire batch of m examples in standard BERT.
Therefore, we resort to the following three-stage
training process:

1. We train only the context part, minimizing
‖ew − A · (

∑m
i=1 ρi · vcontext

(w,Ci)
) + b‖2 where

ρi is the weight assigned to each context Ci

through the AM layer. Regardless of the se-
lected BERTRAM variant, the context embed-
ding is always obtained using SHALLOW in
this stage. Furthermore, only A, b and all
parameters of the AM layer are optimized.

2. We train only the form part (i.e., only the n-
gram embeddings); our loss for a single exam-
ple (w, C) is ‖ew − vform

(w,C)‖
2. Training in this

stage is completely detached from the under-
lying BERT model.

3. In the third stage, we combine the pretrained
form-only and context-only models and train
all parameters. The first two stages are only
run once and then used for all three BERTRAM

variants because context and form are trained
in isolation. The third stage must be run for
each variant separately.

We freeze all of BERT’s parameters during training
as we – somewhat surprisingly – found that this
slightly improves the model’s performance while
speeding up training. For ADD, we additionally
found it helpful to freeze the form part in the third
training stage. Importantly, for the first two stages
of our training procedure, we do not have to back-
propagate through BERT to obtain all required gra-
dients, drastically increasing the training speed.

4 Dataset Rarification

The ideal dataset for measuring the quality of rare
word representations would be one for which the
accuracy of a model with no understanding of rare
words is 0% whereas the accuracy of a model that
perfectly understands rare words is 100%. Unfortu-
nately, existing datasets do not satisfy this desidera-
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tum, not least because rare words – by their nature
– occur rarely.

This does not mean that rare words are not im-
portant: As we shift our focus in NLP from words
and sentences as the main unit of processing to
larger units like paragraphs and documents, rare
words will occur in a high proportion of such larger
“evaluation units”. Rare words are also clearly a
hallmark of human language competence, which
should be the ultimate goal of NLP. Our work is
part of a trend that sees a need for evaluation tasks
in NLP that are more ambitious than what we have
now.4

To create more challenging datasets, we use rar-
ification, a procedure that automatically transforms
existing text classification datasets in such a way
that rare words become important. We require a
pretrained language model M as a baseline, an
arbitrary text classification dataset D containing la-
beled instances (x, y) and a substitution dictionary
S, mapping each word w to a set of rare synonyms
S(w). Given these ingredients, our procedure con-
sists of three steps: (i) splitting the dataset into a
train set and a set of test candidates, (ii) training the
baseline model on the train set and (iii) modifying
a subset of the test candidates to generate the final
test set.

Dataset Splitting. We partition D into a training
set Dtrain and a set of test candidates, Dcand. Dcand
contains all instances (x, y) ∈ D such that for at
least one word w in x, S(w) 6= ∅ – subject to the
constraint that the training set contains at least one
third of the entire data.

Baseline Training. We finetuneM onDtrain. Let
(x, y) ∈ Dtrain where x = w1, . . . , wn is a se-
quence of words. We deviate from the finetuning
procedure of Devlin et al. (2019) in three respects:

• We randomly replace 5% of all words in x
with a [MASK] token. This allows the model
to cope with missing or unknown words, a
prerequisite for our final test set generation.

• As an alternative to overwriting the language
model’s uncontextualized embeddings for rare
words, we also want to allow models to add an
alternative representation during test time, in

4Cf. (Bowman, 2019): “If we want to be able to establish
fair benchmarks that encourage future progress toward robust,
human-like language understanding, we’ll need to get better
at creating clean, challenging, and realistic test datasets.”

which case we simply separate both represen-
tations by a slash (cf. §5.3). To accustom the
language model to this duplication of words,
we replace each word wi with “wi / wi” with
a probability of 10%. To make sure that the
model does not simply learn to always focus
on the first instance during training, we ran-
domly mask each of the two repetitions with
probability 25%.

• We do not finetune the model’s embedding
layer. We found that this does not hurt per-
formance, an observation in line with recent
findings of Lee et al. (2019).

Test Set Generation. Let p(y | x) be the proba-
bility that the finetuned model M assigns to class y
given input x, and M(x) = argmaxy∈Y p(y | x)
be the model’s prediction for input x where Y de-
notes the set of all labels. For generating our test
set, we only consider candidates that are classified
correctly by the baseline model, i.e., candidates
(x, y) ∈ Dcand with M(x) = y. For each such
entry, let x = w1, . . . , wn and let xwi=t be the se-
quence obtained from x by replacing wi with t. We
compute

wi = argmin
wj :S(wj)6=∅

p(y | xwj=[MASK]),

i.e., we select the word wi whose masking pushes
the model’s prediction the farthest away from
the correct label. If removing this word al-
ready changes the model’s prediction – that is,
M(xwi=[MASK]) 6= y –, we select a random rare
synonym ŵi ∈ S(wi) and add (xwi=ŵi

, y) to the
test set. Otherwise, we repeat the above procedure;
if the label still has not changed after masking up to
5 words, we discard the candidate. Each instance
(xwi1

=ŵi1
,...,wik

=ŵik
, y) of the resulting test set has

the following properties:

• If each wij is replaced by [MASK], the entry
is classified incorrectly by M . In other words,
understanding the words wij is necessary for
M to determine the correct label.

• If the model’s internal representation of each
ŵij is sufficiently similar to its representation
of wij , the entry is classified correctly by M .
That is, if the model is able to understand
the rare words ŵij and to identify them as
synonyms of wij , it will predict the correct
label.
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Model RARE MEDIUM

BERT (base) 0.112 0.234
+ AM (Schick and Schütze, 2020) 0.251 0.267
+ BERTRAM-SHALLOW 0.250 0.246
+ BERTRAM-REPLACE 0.155 0.216
+ BERTRAM-ADD 0.269 0.367
BERT (large) 0.143 0.264

RoBERTa (large) 0.270 0.275
+ BERTRAM-ADD 0.306 0.323

Table 1: MRR on WNLaMPro test for baseline mod-
els and various BERTRAM configurations. Best results
per base model are underlined, results that do not dif-
fer significantly from the best results in a paired t-test
(p < 0.05) are bold.

Note that the test set is closely coupled to the
baseline model M because we select the words to
be replaced based on M ’s predictions. Importantly,
however, the model is never queried with any rare
synonym during test set generation, so its repre-
sentations of rare words are not taken into account
for creating the test set. Thus, while the test set
is not suitable for comparing M with an entirely
different modelM ′, it allows us to compare various
strategies for representing rare words in the embed-
ding space ofM . Definitional Nonce (Herbelot and
Baroni, 2017) is subject to a similar constraint: it
is tied to a specific (uncontextualized) embedding
space based on Word2Vec (Mikolov et al., 2013).

5 Evaluation

5.1 Setup

For our evaluation of BERTRAM, we follow the ex-
perimental setup of Schick and Schütze (2020). We
experiment with integrating BERTRAM both into
BERTbase and RoBERTalarge (Liu et al., 2019b).
Throughout our experiments, when BERTRAM is
used to provide input representations for one of the
two models, we use the same model as BERTRAM’s
underlying language model. Further training speci-
fications can be found in Appendix A.

While BERT was trained on BookCorpus (Zhu
et al., 2015) and a large Wikipedia dump, we fol-
low previous work and train BERTRAM only on the
much smaller Westbury Wikipedia Corpus (WWC)
(Shaoul and Westbury, 2010); this of course gives
BERT a clear advantage over BERTRAM. This ad-
vantage is even more pronounced when comparing
BERTRAM with RoBERTa, which is trained on a
corpus that is an order of magnitude larger than the
original BERT corpus. We try to at least partially

Task Entry

MNLI i think i will go finish up my laundry wash-
ables.

AG’s [. . . ] stake will improve meliorate syman-
tec’s consulting contacts [. . . ]

DBPedia yukijiro hotaru [. . . ] is a japanese nipponese
actor histrion.

MNLI a smart person is often ofttimes correct in
their answers ansers.

MNLI the southwest has a lot of farming and
vineyards vineries that make excellent
fantabulous merlot.

Table 2: Examples from rarified datasets. Crossed out:
replaced words. Bold: replacements.

compensate for this as follows: In our downstream
task experiments, we gather the set of contexts C
for each word from WWC+BookCorpus during
inference.5

5.2 WNLaMPro
We evaluate BERTRAM on the WNLaMPro dataset
(Schick and Schütze, 2020). This dataset consists
of cloze-style phrases like “A lingonberry is a .”
and the task is to correctly fill the slot ( ) with
one of several acceptable target words (e.g., “fruit”,
“bush” or “berry”), which requires understanding of
the meaning of the phrase’s keyword (“lingonberry”
in the example). As the goal of this dataset is to
probe a language model’s ability to understand rare
words without any task-specific finetuning, Schick
and Schütze (2020) do not provide a training set.
The dataset is partitioned into three subsets based
on the keyword’s frequency in WWC: RARE (oc-
curring fewer than 10 times) MEDIUM (occurring
between 10 and 100 times), and FREQUENT (all
remaining words).

For our evaluation, we compare the performance
of a standalone BERT (or RoBERTa) model with
one that uses BERTRAM as shown in Figure 1 (bot-
tom). As our focus is to improve representations
for rare words, we evaluate our model only on WN-
LaMPro RARE and MEDIUM. Table 1 gives results;
our measure is mean reciprocal rank (MRR). We
see that supplementing BERT with any of the pro-
posed methods results in noticeable improvements
for the RARE subset, with ADD clearly outperform-
ing SHALLOW and REPLACE. Moreover, ADD per-
forms surprisingly well for more frequent words,
improving the score for WNLaMPro-MEDIUM by

5We recreate BookCorpus with the script at github.
com/soskek/bookcorpus. We refer to the joined cor-
pus of WWC and BookCorpus as WWC+BookCorpus.

github.com/soskek/bookcorpus
github.com/soskek/bookcorpus
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MNLI AG’s News DBPedia

Model All Msp WN All Msp WN All Msp WN

BERT (base) 50.5 49.1 53.4 56.5 54.8 61.9 49.3 46.0 57.6
+ Mimick (Pinter et al., 2017) 37.2 38.2 38.7 45.3 43.9 50.5 36.5 35.8 41.1
+ A La Carte (Khodak et al., 2018) 44.6 45.7 46.1 52.4 53.7 56.1 51.1 48.7 59.3
+ AM (Schick and Schütze, 2020) 50.9 50.7 53.6 58.9 59.8 62.6 60.7 63.1 62.8
+ BERTRAM 53.3 52.5 55.6 62.1 63.1 65.3 64.2 67.9 64.1
+ BERTRAM-SLASH 56.4 55.3 58.6 62.9 63.3 65.3 65.7 67.3 67.2
+ BERTRAM-SLASH + INDOMAIN 59.8 57.3 62.7 62.5 62.1 66.6 74.2 74.8 76.7

RoBERTa (large) 67.3 68.7 68.4 63.7 68.1 65.7 65.5 67.3 66.6
+ BERTRAM-SLASH 70.1 71.5 70.9 64.6 68.4 64.9 71.9 73.8 73.9
+ BERTRAM-SLASH + INDOMAIN 71.7 71.9 73.2 68.1 71.9 69.0 76.0 78.8 77.3

Table 3: Accuracy of standalone BERT and RoBERTa, various baselines and BERTRAM on rarified MNLI, AG’s
News and DBPedia. The five BERTRAM instances are BERTRAM-ADD. Best results per baseline model are
underlined, results that do not differ significantly from the best results in a two-sided binomial test (p < 0.05) are
bold. Msp/WN: subset of instances containing at least one misspelling/synonym. All: all instances.

58% compared to BERTbase and 37% compared
to Attentive Mimicking. This makes sense con-
sidering that the key enhancement of BERTRAM

over AM lies in improving context representations
and interconnection of form and context; the more
contexts are given, the more this comes into play.
Noticeably, despite being both based on and in-
tegrated into a BERTbase model, our architecture
even outperforms BERTlarge by a large margin.
While RoBERTa performs much better than BERT
on WNLaMPro, BERTRAM still significantly im-
proves results for both rare and medium frequency
words. As it performs best for both the RARE and
MEDIUM subset, we always use the ADD configura-
tion of BERTRAM in the following experiments.

5.3 Downstream Task Datasets
To measure the effect of adding BERTRAM to a
pretrained deep language model on downstream
tasks, we rarify (cf. §4) the following three datasets:

• MNLI (Williams et al., 2018), a natural lan-
guage inference dataset where given two sen-
tences a and b, the task is to decide whether
a entails b, a and b contradict each other or
neither;

• AG’s News (Zhang et al., 2015), a news classi-
fication dataset with four different categories
(world, sports, business and science/tech);

• DBPedia (Lehmann et al., 2015), an ontology
dataset with 14 classes (e.g., company, artist)
that have to be identified from text snippets.

For all three datasets, we create rarified instances
both using BERTbase and RoBERTalarge as a base-
line model and build the substitution dictionary S

using the synonym relation of WordNet (Miller,
1995) and the pattern library (Smedt and Daele-
mans, 2012) to make sure that all synonyms have
consistent parts of speech. Furthermore, we only
consider synonyms for each word’s most frequent
sense; this filters out much noise and improves the
quality of the created sentences. In addition to
WordNet, we use the misspelling dataset of Pik-
tus et al. (2019). To prevent misspellings from
dominating the resulting datasets, we only assign
misspelling-based substitutes to randomly selected
10% of the words contained in each sentence. Mo-
tivated by the results on WNLaMPro-MEDIUM, we
consider every word that occurs less than 100 times
in WWC+BookCorpus as being rare. Example
entries from the rarified datasets obtained using
BERTbase as a baseline model can be seen in Ta-
ble 2. The average number of words replaced with
synonyms or misspellings is 1.38, 1.82 and 2.34
for MNLI, AG’s News and DBPedia, respectively.

Our default way of injecting BERTRAM embed-
dings into the baseline model is to replace the se-
quence of uncontextualized subword token embed-
dings for a given rare word with its BERTRAM-
based embedding (Figure 1, bottom). That is,
given a sequence of uncontextualized token em-
beddings e = e1, . . . , en where ei, . . . , ej with
1 ≤ i ≤ j ≤ n is the sequence of embeddings
for a single rare word w with BERTRAM-based
embedding v(w,C), we replace e with

e′ = e1, . . . , ei−1, v(w,C), ej+1, . . . , en .

As an alternative to replacing the original se-
quence of subword embeddings for a given rare
word, we also consider BERTRAM-SLASH, a con-
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figuration where the BERTRAM-based embedding
is simply added and both representations are sepa-
rated using a single slash:

eSLASH = e1, . . . , ej , e/, v(w,C), ej+1, . . . , en .

The intuition behind this variant is that in BERT’s
pretraining corpus, a slash is often used to separate
two variants of the same word (e.g., “useable / us-
able”) or two closely related concepts (e.g., “com-
pany / organization”, “web-based / cloud”) and
thus, BERT should be able to understand that both
ei, . . . , ej and v(w,C) refer to the same entity. We
therefore surmise that whenever some information
is encoded in one representation but not in the other,
giving BERT both representations is helpful.

By default, the set of contexts C for each
word is obtained by collecting all sentences from
WWC+BookCorpus in which it occurs. We also
try a variant where we add in-domain contexts by
giving BERTRAM access to all texts (but not la-
bels) found in the test set; we refer to this variant as
INDOMAIN.6 Our motivation for including this vari-
ant is as follows: Moving from the training stage of
a model to its production use often causes a slight
domain shift. This is turn leads to an increased
number of input sentences containing words that
did not – or only very rarely – appear in the training
data. However, such input sentences can easily be
collected as additional unlabeled examples during
production use. While there is no straightforward
way to leverage these unlabeled examples with an
already finetuned BERT model, BERTRAM can eas-
ily make use of them without requiring any labels
or any further training: They can simply be in-
cluded as additional contexts during inference. As
this gives BERTRAM a slight advantage, we also
report results for all configurations without using
indomain data. Importantly, adding indomain data
increases the number of contexts for more than 90%
of all rare words by at most 3, meaning that they
can still be considered rare despite the additional
indomain contexts.

Table 3 reports, for each task, the accuracy on the
entire dataset (All) as well as scores obtained con-
sidering only instances where at least one word was
replaced by a misspelling (Msp) or a WordNet syn-
onym (WN), respectively.7 Consistent with results

6For the MNLI dataset, which consists of text pairs (a, b),
we treat a and b as separate contexts.

7Note that results for BERT and RoBERTa are only loosely
comparable because the datasets generated from both baseline
models through rarification are different.
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Figure 3: BERT vs. BERT combined with BERTRAM-
SLASH (BERT+BSL) on three downstream tasks for
varying maximum numbers of contexts cmax

on WNLaMPro, combining BERT with BERTRAM

consistently outperforms both a standalone BERT
model and one combined with various baseline
models. Using the SLASH variant brings improve-
ments across all datasets as does adding INDOMAIN

contexts (exception: BERT/AG’s News). This
makes sense considering that for a rare word, every
single additional context can be crucial for gaining
a deeper understanding. Correspondingly, it is not
surprising that the benefit of adding BERTRAM to
RoBERTa is less pronounced, because BERTRAM

uses only a fraction of the contexts available to
RoBERTa during pretraining. Nonetheless, adding
BERTRAM significantly improves RoBERTa’s ac-
curacy for all three datasets both with and without
adding INDOMAIN contexts.

To further understand for which words using
BERTRAM is helpful, Figure 3 looks at the accuracy
of BERTbase both with and without BERTRAM as a
function of word frequency. That is, we compute
the accuracy scores for both models when consid-
ering only entries (xwi1

=ŵi1
,...,wik

=ŵik
, y) where

each substituted word ŵij occurs less than cmax
times in WWC+BookCorpus, for different values
of cmax. As one would expect, cmax is positively cor-
related with the accuracies of both models, showing
that the rarer a word is, the harder it is to under-
stand. Interestingly, the gap between standalone
BERT and BERT with BERTRAM remains more
or less constant regardless of cmax. This suggests
that using BERTRAM may even be helpful for more
frequent words.

To investigate this hypothesis, we perform an-
other rarification of MNLI that differs from the
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Figure 4: Improvements for BERT (base) and
RoBERTa (large) when adding BERTRAM-SLASH
(+BSL) or BERTRAM-SLASH + INDOMAIN (+BSL+ID)
on MNLI-1000

previous rarification in two respects. First, we in-
crease the threshold for a word to count as rare
from 100 to 1000. Second, as this means that we
have more WordNet synonyms available, we do not
use the misspelling dictionary (Piktus et al., 2019)
for substitution. We refer to the resulting datasets
for BERTbase and RoBERTalarge as MNLI-1000.

Figure 4 shows results on MNLI-1000 for var-
ious rare word frequency ranges. For each value
[c0, c1) on the x-axis, the y-axis shows improve-
ment in accuracy compared to standalone BERT
or RoBERTa when only dataset entries are con-
sidered for which each rarified word occurs be-
tween c0 (inclusively) and c1 (exclusively) times
in WWC+BooksCorpus. We see that for words
with frequency less than 125, the improvement in
accuracy remains similar even without using mis-
spellings as another source of substitutions. In-
terestingly, for every single interval of rare word
counts considered, adding BERTRAM-SLASH to
BERT considerably improves its accuracy. For
RoBERTa, adding BERTRAM brings improvements
only for words occurring less than 500 times.
While using INDOMAIN data is beneficial for
rare words – simply because it gives us addi-
tional contexts for these words –, when consid-
ering only words that occur at least 250 times in
WWC+BookCorpus, adding INDOMAIN contexts
does not help.

6 Conclusion

We have introduced BERTRAM, a novel architec-
ture for inducing high-quality representations for

rare words in BERT’s and RoBERTa’s embedding
spaces. This is achieved by employing a powerful
pretrained language model and deeply integrating
surface-form and context information. By replac-
ing important words with rare synonyms, we cre-
ated downstream task datasets that are more chal-
lenging and support the evaluation of NLP models
on the task of understanding rare words, a capa-
bility that human speakers have. On all of these
datasets, BERTRAM improves over standard BERT
and RoBERTa, demonstrating the usefulness of our
method.

Our analysis showed that BERTRAM is benefi-
cial not only for rare words (our main target in this
paper), but also for frequent words. In future work,
we want to investigate BERTRAM’s potential bene-
fits for such frequent words. Furthermore, it would
be interesting to explore more complex ways of
incorporating surface-form information – e.g., by
using a character-level CNN similar to the one of
Kim et al. (2016) – to balance out the potency of
BERTRAM’s form and context parts.
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A Training Details

Our implementation of BERTRAM is based on Py-
Torch (Paszke et al., 2017) and the Transform-
ers library (Wolf et al., 2019). To obtain tar-
get embeddings for frequent multi-token words
(i.e., words that occur at least 100 times in
WWC+BookCorpus) during training, we use one-
token approximation (OTA) (Schick and Schütze,
2020). For RoBERTalarge, we found increasing the
number of iterations per word from 4,000 to 8,000
to produce better OTA embeddings using the same
evaluation setup as Schick and Schütze (2020). For
all stages of training, we use Adam (Kingma and
Ba, 2015) as optimizer.

Context-Only Training. During the first stage
of our training process, we train BERTRAM with a
maximum sequence length of 96 and a batch size
of 48 contexts for BERTbase and 24 contexts for
RoBERTalarge. These parameters are chosen such
that a batch fits on a single Nvidia GeForce GTX
1080Ti. Each context in a batch is mapped to a
word w from the set of training words, and each
batch contains at least 4 and at most 32 contexts per
word. For BERTbase and RoBERTalarge, we pretrain
the context part for 5 and 3 epochs, respectively.
We use a maximum learning rate of 5 · 10−5 and
perform linear warmup for the first 10% of training
examples, after which the learning rate is linearly
decayed.

Form-Only Training. In the second stage of our
training process, we use the same parameters as
Schick and Schütze (2020), as our form-only model
is the very same as theirs. That is, we use a learning
rate of 0.01, a batch size of 64 words and we apply
n-gram dropout with a probability of 10%. We
pretrain the form-only part for 20 epochs.

Combined Training. For the final stage, we use
the same training configuration as for context-only
training, but we keep n-gram dropout from the
form-only stage. We perform combined training for
3 epochs. For ADD, when using RoBERTa as an un-
derlying language model, we do not just prepad the
input with the surface-form embedding followed
by a colon, but additionally wrap the surface-form
embedding in double quotes. That is, we prepad
the input with e”, vform

(w,C), e”, e:. We found this to
perform slightly better in preliminary experiments
with some toy examples.

B Evaluation Details

WNLaMPro In order to ensure comparability
with results of Schick and Schütze (2020), we use
only WWC to obtain contexts for WNLaMPro key-
words.

Rarified Datasets To obtain rarified instances
of MNLI, AG’s News and DBPedia, we train
BERTbase and RoBERTalarge on each task’s train-
ing set for 3 epochs. We use a batch size of 32,
a maximum sequence length of 128 and a weight
decay factor of 0.01. For BERT, we perform linear
warmup for the first 10% of training examples and
use a maximum learning rate of 5 · 10−5. After
reaching its peak value, the learning rate is lin-
early decayed. For RoBERTa, we found training to
be unstable with these parameters, so we chose a
lower learning rate of 1 ·10−5 and performed linear
warmup for the first 10,000 training steps.

To obtain results for our baselines on the rarified
datasets, we use the original Mimick implementa-
tion of Pinter et al. (2017), the A La Carte imple-
mentation of Khodak et al. (2018) and the Attentive
Mimicking implementation of Schick and Schütze
(2019a) with their default hyperparameter settings.
As A La Carte can only be used for words with
at least one context, we keep the original BERT
embeddings whenever no such context is available.

While using BERTRAM allows us to completely
remove the original BERT embeddings for all rare
words and still obtain improvements in accuracy
on all three rarified downstream tasks, the same is
not true for RoBERTa, where removing the original
sequence of subword token embeddings for a given
rare word (i.e., not using the SLASH variant) hurts
performance with accuracy dropping by 5.6, 7.4
and 2.1 points for MNLI, AG’s News and DBPedia,
respectively. We believe this to be due to the vast
amount of additional contexts for rare words in
RoBERTa’s training set that are not available to
BERTRAM.


