@inproceedings{liu-etal-2020-dscorer,
title = "{D}scorer: A Fast Evaluation Metric for Discourse Representation Structure Parsing",
author = "Liu, Jiangming and
Cohen, Shay B. and
Lapata, Mirella",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.416/",
doi = "10.18653/v1/2020.acl-main.416",
pages = "4547--4554",
abstract = "Discourse representation structures (DRSs) are scoped semantic representations for texts of arbitrary length. Evaluating the accuracy of predicted DRSs plays a key role in developing semantic parsers and improving their performance. DRSs are typically visualized as boxes which are not straightforward to process automatically. Counter transforms DRSs to clauses and measures clause overlap by searching for variable mappings between two DRSs. However, this metric is computationally costly (with respect to memory and CPU time) and does not scale with longer texts. We introduce Dscorer, an efficient new metric which converts box-style DRSs to graphs and then measures the overlap of n-grams. Experiments show that Dscorer computes accuracy scores that are correlated with Counter at a fraction of the time."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="liu-etal-2020-dscorer">
<titleInfo>
<title>Dscorer: A Fast Evaluation Metric for Discourse Representation Structure Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jiangming</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shay</namePart>
<namePart type="given">B</namePart>
<namePart type="family">Cohen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mirella</namePart>
<namePart type="family">Lapata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Discourse representation structures (DRSs) are scoped semantic representations for texts of arbitrary length. Evaluating the accuracy of predicted DRSs plays a key role in developing semantic parsers and improving their performance. DRSs are typically visualized as boxes which are not straightforward to process automatically. Counter transforms DRSs to clauses and measures clause overlap by searching for variable mappings between two DRSs. However, this metric is computationally costly (with respect to memory and CPU time) and does not scale with longer texts. We introduce Dscorer, an efficient new metric which converts box-style DRSs to graphs and then measures the overlap of n-grams. Experiments show that Dscorer computes accuracy scores that are correlated with Counter at a fraction of the time.</abstract>
<identifier type="citekey">liu-etal-2020-dscorer</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.416</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.416/</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>4547</start>
<end>4554</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Dscorer: A Fast Evaluation Metric for Discourse Representation Structure Parsing
%A Liu, Jiangming
%A Cohen, Shay B.
%A Lapata, Mirella
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F liu-etal-2020-dscorer
%X Discourse representation structures (DRSs) are scoped semantic representations for texts of arbitrary length. Evaluating the accuracy of predicted DRSs plays a key role in developing semantic parsers and improving their performance. DRSs are typically visualized as boxes which are not straightforward to process automatically. Counter transforms DRSs to clauses and measures clause overlap by searching for variable mappings between two DRSs. However, this metric is computationally costly (with respect to memory and CPU time) and does not scale with longer texts. We introduce Dscorer, an efficient new metric which converts box-style DRSs to graphs and then measures the overlap of n-grams. Experiments show that Dscorer computes accuracy scores that are correlated with Counter at a fraction of the time.
%R 10.18653/v1/2020.acl-main.416
%U https://aclanthology.org/2020.acl-main.416/
%U https://doi.org/10.18653/v1/2020.acl-main.416
%P 4547-4554
Markdown (Informal)
[Dscorer: A Fast Evaluation Metric for Discourse Representation Structure Parsing](https://aclanthology.org/2020.acl-main.416/) (Liu et al., ACL 2020)
ACL