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Abstract

We propose a novel approach using represen-
tation learning for tackling the problem of ex-
tracting structured information from form-like
document images. We propose an extraction
system that uses knowledge of the types of the
target fields to generate extraction candidates,
and a neural network architecture that learns a
dense representation of each candidate based
on neighboring words in the document. These
learned representations are not only useful in
solving the extraction task for unseen docu-
ment templates from two different domains,
but are also interpretable, as we show using
loss cases.

1 Introduction

In this paper, we present a novel approach to the
task of extracting structured information from form-
like documents using a learned representation of
an extraction candidate. Form-like documents like
invoices, purchase orders, tax forms and insurance
quotes are common in day-to-day business work-
flows, but current techniques for processing them
largely still employ either manual effort or brit-
tle and error-prone heuristics for extraction. The
research question motivating our work is the fol-
lowing: given a target set of fields for a particular
domain – e.g., due date and total amount for in-
voices – along with a small set of manually-labeled
examples, can we learn to extract these fields from
unseen documents?

Take, for instance, the domain of invoices, a doc-
ument type that large enterprises often receive and
process thousands of times every week (iPayables,
2016). Invoices from different vendors often
present the same types of information but with dif-
ferent layouts and positioning. Figure 1 shows the
headers of invoices from a few different vendors

†Work done during an internship at Google Research

Figure 1: Excerpts from sample invoices from different
vendors. Instances of the invoice_date field are
highlighted in green.

showing the invoice date (highlighted in green)
and number in different layouts. Furthermore, in-
voices from the same supplier even share similar
presentation and differ only in specific values. We
refer to this unit of visual pattern that is similar
across a collection of documents as a template,
and the fields of information that are common
across templates in a domain as the schema. The
schema consists of fields like invoice_date
and total_amount, each associated with a type
like date and currency.

Extracting values for these fields from a given
document, particularly one belonging to an unseen
template, is a challenging problem for many rea-
sons. In contrast to most prior work on information
extraction (Sarawagi, 2008), templatic documents
do not contain much prose. Approaches that work
well on natural text organized in sentences can-
not be applied directly to such documents where
spatial layout elements like tables and grid format-
ting are commonplace. Understanding spatial rela-
tionships is critical for achieving good extraction
performance on such documents. Moreover, these
documents are usually in PDF or scanned image
formats, so these presentation hints are not explic-
itly available in a markup language. Techniques
that are successful on HTML documents such as
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web pages, including traditional wrapper induction
approaches (Dalvi et al., 2011), are therefore not
immediately applicable.

Recently, there has been a surge in research in-
terest in solving this extraction task adapting tech-
niques in natural language processing (Liu et al.,
2019), computer vision (Davis et al., 2019), or com-
binations thereof (Katti et al., 2018). In contrast to
this body of work, we propose an approach based
on representation learning for this task. We first
generate extraction candidates for each target field
using its associated type (e.g., all dates as candi-
dates for invoice_date). We then use a neural
network model to learn a dense representation for
each extraction candidate independent of the field
to which it belongs. We also learn a separate repre-
sentation for the field itself, and use the similarity
between the candidate and field representations to
score the candidate according to how likely it is to
be the true extraction value for that field.

The design of our extraction system rests on a
few observations about how information is often
laid out in form-like documents (see Section 2).
An advantage of our representation learning ap-
proach is that it allows us to encode certain priors
we developed based on these observations into the
architecture of the neural network and its input fea-
tures (see Section 4). In fact, our experiments show
that our proposed neural architecture outperforms a
more naive MLP baseline using the same input fea-
tures by about 10 F1 points on the extraction task
for two different domains (see Section 6). Further-
more, the learned candidate representations are also
meaningful and lend themselves to interpretation,
as we show by delving into some loss cases.

2 Observations about Forms

We make three key observations about form-like
documents that inform our design.

Observation 1 Each field often corresponds to a
well-understood type. For example, the only likely
extraction candidates for the invoice_date
field in an invoice are instances of dates. A cur-
rency amount like $25.00 would clearly be incor-
rect. Since there are orders of magnitude fewer
dates on an invoice as there are text tokens, limit-
ing the search space by type dramatically simplifies
the problem. Consequently, we use a library of de-
tectors for several common types such as dates,
currency amounts, integers, address portals, emails
addresses, etc. to generate candidates.

Observation 2 Each field instance is usually as-
sociated with a key phrase that bears an apparent
visual relationship with it. Consider the invoice ex-
cerpt in Figure 1(c). It contains two date instances,
only one of which is the true invoice_date,
as indicated by the word “Date” next to it. Simi-
larly, in the bottom-right invoice excerpt, we are
easily able to distinguish between the invoice num-
ber (indicated by “Invoice #”) and the purchase
order number (indicated by “PO #”). We call such
indicative words key phrases.

Proximity is not the only criterion that defines a
key phrase. For instance, the word “Date” is not the
nearest one to the true invoice_date instance
in Figure 1(c); the document number in the line
above and the page number below are clearly closer.
It is also not the case that the key phrase always
occurs on the same line; Figure 1(a) shows a case
where the key phrase “DATE” occurs just above
the true invoice_date. An effective solution
needs to combine the spatial information along
with the textual information. Fortunately, in our
experience, these spatial relationships exhibit only
a small number of variations across templates, and
these tend to generalize across fields and domains.

Observation 3 Key phrases for a field are largely
drawn from a small vocabulary of field-specific
variants. In a corpus of invoices we collected, we
observed that, as exemplified by the samples in Fig-
ure 1, about 93% of the nearly 8400 invoice date
instances were associated with key phrases that in-
cluded the words “date” or “dated” and about 30%
included “invoice”. Only about 7% of invoice dates
had neither of these words in their key phrases.
Similarly, 87% of the nearly 2800 due_date in-
stances in our corpus had key phrases that con-
tained the word “due” and 81% contained “date”.
We found similar patterns for all other fields we
investigated. The fact that there are only a small
number of field-specific key phrases suggests that
this problem may be tractable with modest amounts
of training data.

While these observations are applicable to many
fields across different document types, there are
several exceptions which we plan to tackle in future
work.

3 Extraction Pipeline

We leveraged the observations laid out in Section 2
to build a system to solve the information extraction
task for form-like documents. Given a document
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and a target schema, we generate extraction candi-
dates for each field from the document text using
the field type. We then score each candidate inde-
pendently using a neural scoring model. Finally,
we assign at most one scored candidate as an ex-
traction result for each field. We discuss the stages
of this pipeline here, and delve into the architecture
of the scoring model in Section 4.

3.1 Ingestion
Our system can ingest both native digital as well as
scanned documents. We render each document to
an image and use a cloud OCR service1 to extract
all the text in it.

The text in the OCR result is arranged in the
form of a hierarchy with individual characters at
the leaf level, and words, paragraphs and blocks
respectively in higher levels. The nodes in each
level of the hierarchy are associated with bounding
boxes represented in the 2D Cartesian plane of
the document page. The words in a paragraph are
arranged in reading order, as are the paragraphs
and blocks themselves.

3.2 Candidate Generation
In Section 2, we made the observation that fields in
our target schema correspond to well-understood
types like dates, integers, currency amounts, ad-
dresses, etc. There are well-known techniques to
detect instances of these types in text, ranging from
regular expression matching and heuristics to se-
quence labeling using models trained on web data.

We associate each field type supported by our
system with one or more candidate generators.
These generators use a cloud-based entity extrac-
tion service2 to detect spans of the OCR text ex-
tracted from the documents that are instances of
the corresponding type. For example, every date
in an invoice becomes a candidate for every date
field in the target schema, viz. invoice_date,
due_date and delivery_date.

Since the recall of the overall extraction system
cannot exceed that of the candidate generators, it
is important that their recall be high. Precision is,
however, largely the responsibility of the scorer
and assigner.

3.3 Scoring and Assignment
Given a set of candidates from a document for each
field in the target schema, the crux of the extraction

1cloud.google.com/vision
2cloud.google.com/natural-language

task is to identify the correct extraction candidate
(if any) for each field. While there are many ap-
proaches one could take to solve this problem, we
made the design choice to break it down to two
steps: first, we compute a score ∈ [0, 1] for each
candidate independently using a neural model, then
we assign to each field the scored candidate that is
most likely to be the true extraction for it.

This separation of scoring and assignment al-
lows us to learn a representation for each candidate
based only on its neighborhood, independently of
other candidates and fields. It also frees us to en-
code arbitrarily complex business rules into the
assigner if required, for example, that the due date
for an invoice cannot (chronologically) precede its
invoice date, or that the line item prices must sum
up to the total.

For brevity, we omit the details of the assignment
module and report results using a simple assigner
that chooses the highest-scoring candidate for each
field independently of other fields.

4 Neural Scoring Model

The scoring module takes as input the target field
from the schema and the extraction candidate to
produce a prediction score ∈ [0, 1]. While the
downstream assignement module consumes the
scores directly, the scorer is trained and evalu-
ated as a binary classifier. The target label for a
candidate is determined by whether the candidate
matches the ground truth for that document and
field.

An important desideratum for us in the design of
the scorer is that it learns a meaningful candidate
representation. We propose an architecture where
the model learns separate embeddings for the can-
didate and the field it belongs to, and where the
similarity between the candidate and field embed-
dings determines the score.

We believe that such an architecture allows a
single model to learn candidate representations that
generalize across fields and document templates.
We can conceptualize the learned representation of
a candidate as encoding what words in its neighbor-
hood form its associated key phrase since, apropos
Observation 2, the spatial relationships between
candidates and their key phrases are observed to
generalize across fields. On the other hand, the
embedding for a field can be conceptualized as
encoding the key phrase variants that are usually
indicative of it, apropos Observation 3.

cloud.google.com/vision
cloud.google.com/natural-language
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Figure 2: Neighbor ‘Invoice’ for invoice_date
candidate with relative position (−0.06,−0.01).

4.1 Candidate features
We would like our model to learn a representa-
tion of a candidate that captures its neighborhood.
Accordingly, the essential features of a candidate
are the text tokens that appear nearby, along with
their positions. We use a simple heuristic to de-
termine what OCR text tokens we consider to be
the neighbors of a given candidate: we define a
neighborhood zone around the candidate extending
all the way to the left of the page and about 10%
of the page height above it. Any text tokens whose
bounding boxes overlap by more than half with the
neighborhood zone is considered to be a neighbor.

As shown in Figure 2, we represent the position
of a candidate and each of its neighbors using the
2-D Cartesian coordinates of the centroids of their
respective bounding boxes. These coordinates are
normalized by dividing by the corresponding page
dimensions so that the features are independent of
the pixel resolution of the input documents. We
calculate the relative position of a neighbor as the
difference between its normalized 2-D coordinates
and those of the candidate. An additional feature
we found to be helpful is the absolute position of
the candidate itself.

An important design choice we made is to not
incorporate the candidate text into the input. Note
that this text was already the basis for generating
the candidate in the first place. Withholding this
information from the input to the model avoids ac-
cidental overfitting to our somewhat-small training
datasets. For instance, since the invoices we col-
lected were all dated prior to 2019, it is possible
that providing the date itself as input to the model
could cause it to learn that true invoice_date
instances always occur prior to 2019.

4.2 Embeddings
As shown in Figure 3 (a)-(d), we embed each of the
candidate features separately in the following ways.

Figure 3: Neural Scoring Model. Pos. = Positional,
Cand. = Candidate, Embed. = Embedding

The neighboring text tokens are embedded using a
word embedding table. Each neighbor relative po-
sition is embedded through a nonlinear positional
embedding consisting of two ReLU-activated lay-
ers with dropout. This nonlinear embedding allows
the model to learn to resolve fine-grained differ-
ences in position, say between neighbors sharing
the same line as the candidate and those on the line
above. The candidate position feature is embedded
using just a linear layer. We also use an embedding
table for the field to which a candidate belongs.

In a model with embedding dimension d, the
sizes of each neighbor’s word and position embed-
dings are set to be d. We experimented with dif-
ferent sizes for the word and position embeddings,
but it did not make a significant difference. For
simplicity of exposition, we use the same value for
both. Since each candidate is padded to have the
same number of neighbors, say N , we denote the
neighbor embeddings {h1,h2, . . . ,hN}, with each
hi ∈ R2d. We also set the sizes of the candidate
position embedding as well as the field embedding
to be d.

Neighbor Encodings It is important to note that
the initial neighbor embeddings hi (Figure 3 (d))
are independent of each other. In order to cap-
ture interactions between neighbors, we employ
self-attention (Vaswani et al., 2017), allowing each
neighbor to have its embedding affected by all oth-
ers. This is useful, for example, for the model to
downweight a neighbor that has other neighbors
between itself and the candidate.

We pack the neighbor embeddings hi into a
matrix H ∈ RN×2d, then transform these em-
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bdeddings into query, key and value embeddings
through three different linear projection matrices
Wq, Wk and Wv ∈ R2d×2d.

qi = hiWq K = HWk V = HWv

For each neighbor i, its query embedding qi

and the key embeddings K are used to obtain the
attention weight vector αi ∈ RN as follows.

αi = Softmax

Ç
qiK

T

√
2d

å
The self-attended neighbor encoding h̃i ∈ R2d

(see Figure 3(e)) for neighbor i is a linear combina-
tion of the value embeddings, V ∈ RN×2d, using
the above attention weights for all the neighbors
h̃i = αiV .

As in Vaswani et al. (2017), we use a normal-
ization constant of

√
2d to improve stability. We

project the self-attended neighbor encodings to a
larger 4× 2d dimensional space using a linear pro-
jection with ReLU nonlinearity, and then project
them back to 2d.

4.3 Candidate Encoding
We combine the N neighbor encodings of size 2d
each to form a single encoding of size 2d for the
entire neighborhood. Since we already capture in-
formation about the relative positions of the neigh-
bors with respect to the candidates in the embed-
dings themselves, it is important to ensure that the
neighborhood encoding is invariant to the (arbi-
trary) order in which the neighbors are included in
the features. Our experiments indicate that max-
pooling the neighbor encodings together was the
best strategy, slightly beating out mean-pooling.

Next, we obtain a candidate encoding (see Fig-
ure 3(f, h, i)) by concatenating the neighborhood
encoding ∈ R2d with the candidate position em-
bedding ∈ Rd and projecting (through a ReLU-
activated linear layer) back down to d dimensions.

Candidate Scoring The candidate encoding is
expected to contain all relevant information about
the candidate, including its position and its neigh-
borhood. By design, it is independent of the field to
which said candidate belongs. This neural network
is, however, trained as a binary classifier to score
a candidate according to how likely it is to be the
true extraction value for some field and document.

Drawing inspiration from prior work in metric
learning (Kulis, 2013), given a field with embed-
ding f ∈ Rd and its candidate with encoding c ∈

Corpus Split # Docs # Templates

Invoices1 Train 11,390 11,390
Validation 2,847 2,847

Invoices2 Test 595 595

Receipts
Train 237 141
Validation 71 47
Test 170 46

Table 1: Invoices and Receipts corpora

Rd, we compute CosineSimilarity(c, f) ∈ [−1, 1].
Finally, the model’s prediction is simply a (con-
stant) linear rescaling of this similarity so that the
scores lie in [0, 1]. The model is trained using bi-
nary cross entropy between this prediction and the
target label as the loss function.

Intuitively, this architecture ensures that the pos-
itive candidates for a field cluster together near
its field embedding, and that these clusters are set
far apart from each other. We use TSNE (Maaten
and Hinton, 2008) to visualize this phenomenon in
Section 6.2.

5 Datasets

To analyze the performance of our model, we used
datasets belonging to two different domains, sum-
marized in Table 1.

Invoices We collected two corpora of invoices
from different sources. The first corpus, Invoices1,
contains 14,237 single-page invoices. Each invoice
was from a different vendor, so the documents do
not share any common templates. Documents from
the same vendor are generated from the same tem-
plate. The second corpus, Invoices2, contains 595
documents belonging to different templates, with
no templates in common with Invoices1. In all of
our experiments, we used a 60-40 split of templates
in Invoices1 as our training and validation sets, and
all the templates in Invoices2 as our test set.

We asked human annotators to provide us ground
truth extraction results for the fields shown in Ta-
ble 2. The candidate generator associated with each
field type was used to generate examples, which
were then labeled using the ground truth.

About 95% of documents and fields present
the training set had at least one positive example
produced by our candidate generators. The field-
level recall of our candidate generators varies from
about 87% for invoice_id to about 99% for
invoice_date. Improving the recall of candi-
date generators is part of our ongoing effort.
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While the candidate generators have reason-
ably high recall, their precision varies dramat-
ically from field to field. For common fields
like invoice_date and total_amount that
are present in nearly all documents, we gen-
erate fewer than ten negatives for each posi-
tive example. On the other hand, for rare
fields like total_tax_amount as well as for
fields with low-precision candidate generators
such as the alphanum candidate generator for
purchase_order, there can sometimes be
dozens of negatives for each positive. Overall,
since the negatives far outnumber the positives,
we found it helpful to randomly downsample nega-
tives in the training set to keep at most 40 negatives
for each positive per field. The negatives in the
validation and test sets were not downsampled.

We created a vocabulary of the 512 most fre-
quent tokens, case-normalized, taken from the
OCR text of the documents in Invoices1. The vo-
cabulary also includes special tokens for numbers
([NUMBER]), out-of-vocabulary tokens ([RARE])
and padding ([PAD]). Despite the small size of
this vocabulary, it covered at least 95% of words
that occurred in key phrases across the entire corpus
where excluded words were usually OCR errors.

Receipts We also evaluated our model using a
publicly-available corpus of scanned receipts pub-
lished as part of the ICDAR 2019 Robust Reading
Challenge on Scanned Receipts OCR and Infor-
mation Extraction3. This corpus contains 626 re-
ceipt images with ground truth extraction results
for four fields, viz., address, company, date
and total. Using the company annotation as the
template mapping, we found that these documents
belong to 234 templates. The largest template con-
tains 46 receipts and about half the documents be-
long to 13 templates with more than 10 documents
each. On the other hand, nearly 70% of templates
only have a single document. In all of our exper-
iments, we used a 60-20-20 split of templates as
our training, validation and test sets respectively,
sampling at most 5 documents from each template.

Our target schema for this extraction task con-
sists of the date and total fields. We generated
labeled examples for these two fields using a vocab-
ulary created as above from the 512 most frequent
terms in the OCR text of the receipts. The fields in
this dataset did not suffer from the label imbalance
problem highlighted above for invoices.

3rrc.cvc.uab.es/?ch=13

6 Experiments

In this section, we evaluate our scoring model with
respect to our two key desiderata. First, in Sec-
tion 6.1, we show that our model is able to help the
extraction system generalize to unseen templates.
Then, in Section 6.2, we probe the model to show
that it learns meaningful internal representations.

In the experiments described below, we trained
models using the Rectified Adam (Liu et al., 2020)
optimizer with a learning rate of 0.001 for 50
epochs. For both the Invoices and Receipts datasets
described in Section 5, we used the training split
to train the model, the validation split to pick the
model with the best hold-out loss, and the test split
to report performance metrics.

6.1 Generalization to unseen templates

We measured the performance of our model’s scor-
ing predictions using ROC AUC on the test split.
We also analyzed its performance in the context
of the overall extraction system using the accuracy
of the end-to-end extraction results as measured
by the maximum F1 score over all decision thresh-
olds, averaged across all fields in the target schema
shown in Table 2.

To demonstrate the benefits of our proposed neu-
ral architecture over a naive approach, we use two
different baseline models for encoding a candidate
and scoring it. The bag-of-words BoW baseline
incorporates only the neighboring tokens of a can-
didate, but not their positions. The MLP base-
line uses the same input features as our proposed
model, including the relative positions of the candi-
date’s neighbors, and encodes the candidate using
3 hidden layers. Both these baselines follow our
representation learning approach, encoding the can-
didate and the field separately. Just as in our model,
the final score is the cosine distance between the
candidate and field encodings, normalized to [0, 1]
using a sigmoid.

We chose the dimension size for each model
architecture using a grid-based hyperparameter
search. All the metrics we report were obtained
from performing 10 training runs and picking the
model with the best validation ROC AUC.

Table 2 summarizes the results of this per-
formance comparison. On both our evaluation
datasets, our model showed a significant improve-
ment over the baselines by both metrics. For the
invoice corpus, our model outperforms the BoW
baseline by about 1 point in the scorer ROC AUC,

rrc.cvc.uab.es/?ch=13
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Corpus Field Field Type Train Test Scorer ROC AUC End-to-End Max F1
# +ves % +ves BoW MLP Ours BoW MLP Ours

In
vo

ic
es

amount_due currency 5,930 4.8% 0.967 0.968 0.973 0.800 0.789 0.801
due_date date 5,788 12.9% 0.977 0.973 0.984 0.835 0.850 0.861
invoice_date date 13,638 57.4% 0.983 0.986 0.986 0.933 0.939 0.940
invoice_id alphanum 13,719 6.8% 0.983 0.988 0.993 0.913 0.937 0.949
purchase_order alphanum 13,262 2.2% 0.959 0.967 0.976 0.826 0.851 0.896
total_amount currency 8,182 12.5% 0.966 0.972 0.980 0.834 0.849 0.858
total_tax_amount currency 2,949 7.5% 0.975 0.967 0.980 0.756 0.812 0.839

Macro-average - 14.9% 0.973 0.974 0.982 0.842 0.861 0.878

R
ec

ei
pt

s date date 258 85.5% 0.748 0.792 0.737 0.885 0.885 0.854
total currency 475 16.7% 0.834 0.796 0.889 0.631 0.607 0.813

Macro-average - 51.1% 0.791 0.794 0.813 0.758 0.746 0.833

Table 2: Performance on the test set of unseen templates for Invoices and Receipts. The best-performing architec-
ture in each case is highlighted.

which translates to about 3.6 points improvement
in the end-to-end Max F1. In fact, our model beats
the baseline in every field in our invoice target
schema as well. This difference in performance
clearly demonstrates the need to incorporate token
positions to extract information accurately from
form-like documents. Using neighbor position in-
formation, the MLP baseline is able to outperform
the BoW baseline as well, but the improvement in
end-to-end Max F1 is only about 2 points. This
result demonstrates that our proposed architecture
is better able to encode position information than a
naive MLP.

Similarly, for the receipt corpus also, our model
outperforms both the baselines. The improvement
is much larger for the total field, more than 20
points. For the date field, since there are too few
negative candidates in the dataset, all the models
have comparable performance end-to-end.

A close examination of the per-field performance
metrics in Table 2 reveals that model performance
is greatly affected by both the number of posi-
tive training candidates, as well as by the ratio
of positives to negatives. The best performance
is observed for fields that occur frequently in in-
voices (e.g., invoice_id) and where the candi-
date generator emits only a small number of neg-
atives for each positive (e.g., invoice_date).
Conversely, the fields that are hardest to extract are
those that are relatively rare and have low-precision
candidate generators, viz., amount_due and
total_tax_amount.

We also studied our model performance over
various ablation setups and found that the relative
order in which various features influence general-
ization performance is: neighbor text > candidate

position > neighbor position. This result is also
borne out by the fact that the BoW baseline, which
omits the last of these features, is quite competitive
with the other approaches.

We also compared the performance of our
proposed architecture with and without the self-
attention layer applied to the neighbor encodings.
We found that self-attention contributes greatly to
model performance for the invoice corpus: not only
did self-attention lead to a 1-point improvement in
scorer ROC AUC and a 1.7 point improvement in
end-to-end max F1, we also observed an improve-
ment in every single field in our invoice schema.

6.2 Meaningful internal representations

We investigated the internal representations learned
by our model by visualizing their 2-D projections
using TSNE. Figure 4(a) shows the representa-
tions learned for date candidates. They are colored
based on the ground truth data indicating if they be-
long to one of invoice_date, due_date, or
delivery_date. The learned encodings clearly
show three distinct (by color) coherent clusters
matching the respective field labels.

Figure 4(b) shows the candidate encodings for a
sample of positive and negative date candidates for
the invoice_date field, along with the embed-
ding for that field. It is apparent that the encodings
of the positive examples are largely clustered to-
gether whereas the sampled negatives show a more
uniform and sparse spatial distribution. Further-
more, the field embedding lies close to the cluster
of positive examples. It is interesting to note that
the field embedding lies not at the center of the
cluster, but rather at its edge, as far away as possi-
ble from the clusters of positive examples for other
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Figure 4: TSNE visualizations for (a) positive candidate encodings for the date fields in the target schema for in-
voices, and (b) positive and negative candidate encodings for invoice_date field as well as its field embedding.
(c), (d) and (e) show three cases of misclustered candidate encodings

fields. This pattern is predicted by the fact that the
loss function is essentially trying to minimize the
cosine distance between the field embedding and
its positives, while maximizing its distance from
its negatives, most importantly the positives for the
other fields.

We also indicate three cases of misclustered can-
didate encodings in Figure 4(a), whose correspond-
ing invoice candidates and their neighborhoods are
excerpted below. Figure 4(c) shows a ground truth
positive invoice_date example whose encod-
ing is far from the invoice_date cluster. It is
clear from examining the invoice that this is an
error in the ground truth labels provided by the
human annotator. In fact, this date is the date
of purchase and not the invoice date. The can-
didate shown in Figure 4(d) has a candidate en-
coding that lies midway between due_date, its
true label, and invoice_date. We believe this
is explained by the fact that this date has both the
terms “Due Date” and “date of invoice” nearby,
which are usually indicative of due_date and
invoice_date respectively. Finally, Figure 4(e)
shows a true invoice_date example whose en-
coding is far away from all the field clusters. A
closer examination of the features of this candidate
showed that our OCR engine was unable to detect
the word “Date” just above the date due to scan-
ning noise. Since this crucial word was missing
from the neighbors of this candidate, the learned
neighborhood representation was clearly incorrect.

7 Related Work

Information extraction from plain text documents
for tasks like named entity recognition and relation
extraction have benefited from recent advances in
deep learning (Lample et al., 2016; Peng et al.,
2017). However, these techniques are not directly
applicable to our task on form-like documents.
Palm et al. (2017) attempts to use RNNs to extract
information from form-like documents. However,
they treat each line as a vector of n-grams limiting
the resulting accuracy.

The importance of understanding visual layout
was recognized even in the context of information
extraction of webpages in recent work (Cai et al.,
2004; Yu et al., 2003; Zhu et al., 2006; Cai et al.,
2003). The techniques developed by them are, how-
ever, not immediately applicable in our context
since we do not have access to the source markup
representation for the documents we deal with.

A common approach to solving the problem of
extracting information from form-like documents
is to register templates in a system, match new doc-
uments to an existing template, and use an extractor
learnt from said template (Chiticariu et al., 2013;
Schuster et al., 2013). The learning problem we
tackle in this paper is more ambitious; we seek to
generalize to unseen templates.

Our work is most closely related to recent at-
tempts to combine layout features with text signals.
Liu et al. (2019) use a document graph and intro-
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duce a graph combination model to combine visual
and textual signals in the document. Katti et al.
(2018) represent a document as a two-dimensional
grid of text tokens. Zhao et al. (2019) show that us-
ing grid information can be useful for information
extraction tasks. Denk and Reisswig (2019) com-
bine the grid-based approach with BERT-based text
encodings. While an apples-to-apples comparison
with these approaches is difficult without a shared
benchmark, our system has several advantages: in
contrast to the graph-based approaches (Liu et al.,
2019) we focus on the harder problem of general-
izing to unseen templates rather than dealing with
the variations within a template. Since we are not
starting with raw pixels, our approach is computa-
tionally less expensive than grid-based approaches.
Further, we do not require clever heuristics to con-
struct a multi-scale grid that is required for the
image-segmentation style abstraction to work well.

To the best of our knowledge, our approach of
using representation learning for this task is the
first of its kind. We gain many of the well-known
benefits of this approach (Bengio et al., 2013), most
notably interpretability.

8 Conclusion and Future Work

In this paper, we presented a novel approach to
the task of extracting structured information from
templatic documents using representation learning.
We showed that our extraction system using this
approach not only has promising accuracy on un-
seen templates in two different domains, but also
that the learned representations lend themselves to
interpretation of loss cases.

In this initial foray into this challenging problem,
we limited our scope to fields with domain-agnostic
types like dates and numbers, and which have only
one true value in a document. In future work, we
hope to tackle repeated fields and learn domain-
specific candidate generators. We are also actively
investigating how our learned candidate represen-
tations can be used for transfer learning to a new
domain and, ultimately, in a few-shot setting.
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