@inproceedings{karan-etal-2020-classification,
title = "Classification-Based Self-Learning for Weakly Supervised Bilingual Lexicon Induction",
author = "Karan, Mladen and
Vuli{\'c}, Ivan and
Korhonen, Anna and
Glava{\v{s}}, Goran",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.618",
doi = "10.18653/v1/2020.acl-main.618",
pages = "6915--6922",
abstract = "Effective projection-based cross-lingual word embedding (CLWE) induction critically relies on the iterative self-learning procedure. It gradually expands the initial small seed dictionary to learn improved cross-lingual mappings. In this work, we present ClassyMap, a classification-based approach to self-learning, yielding a more robust and a more effective induction of projection-based CLWEs. Unlike prior self-learning methods, our approach allows for integration of diverse features into the iterative process. We show the benefits of ClassyMap for bilingual lexicon induction: we report consistent improvements in a weakly supervised setup (500 seed translation pairs) on a benchmark with 28 language pairs.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="karan-etal-2020-classification">
<titleInfo>
<title>Classification-Based Self-Learning for Weakly Supervised Bilingual Lexicon Induction</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mladen</namePart>
<namePart type="family">Karan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ivan</namePart>
<namePart type="family">Vulić</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Korhonen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Goran</namePart>
<namePart type="family">Glavaš</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Effective projection-based cross-lingual word embedding (CLWE) induction critically relies on the iterative self-learning procedure. It gradually expands the initial small seed dictionary to learn improved cross-lingual mappings. In this work, we present ClassyMap, a classification-based approach to self-learning, yielding a more robust and a more effective induction of projection-based CLWEs. Unlike prior self-learning methods, our approach allows for integration of diverse features into the iterative process. We show the benefits of ClassyMap for bilingual lexicon induction: we report consistent improvements in a weakly supervised setup (500 seed translation pairs) on a benchmark with 28 language pairs.</abstract>
<identifier type="citekey">karan-etal-2020-classification</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.618</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.618</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>6915</start>
<end>6922</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Classification-Based Self-Learning for Weakly Supervised Bilingual Lexicon Induction
%A Karan, Mladen
%A Vulić, Ivan
%A Korhonen, Anna
%A Glavaš, Goran
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F karan-etal-2020-classification
%X Effective projection-based cross-lingual word embedding (CLWE) induction critically relies on the iterative self-learning procedure. It gradually expands the initial small seed dictionary to learn improved cross-lingual mappings. In this work, we present ClassyMap, a classification-based approach to self-learning, yielding a more robust and a more effective induction of projection-based CLWEs. Unlike prior self-learning methods, our approach allows for integration of diverse features into the iterative process. We show the benefits of ClassyMap for bilingual lexicon induction: we report consistent improvements in a weakly supervised setup (500 seed translation pairs) on a benchmark with 28 language pairs.
%R 10.18653/v1/2020.acl-main.618
%U https://aclanthology.org/2020.acl-main.618
%U https://doi.org/10.18653/v1/2020.acl-main.618
%P 6915-6922
Markdown (Informal)
[Classification-Based Self-Learning for Weakly Supervised Bilingual Lexicon Induction](https://aclanthology.org/2020.acl-main.618) (Karan et al., ACL 2020)
ACL