@inproceedings{al-khatib-etal-2020-exploiting,
title = "Exploiting Personal Characteristics of Debaters for Predicting Persuasiveness",
author = {Al Khatib, Khalid and
V{\"o}lske, Michael and
Syed, Shahbaz and
Kolyada, Nikolay and
Stein, Benno},
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.632/",
doi = "10.18653/v1/2020.acl-main.632",
pages = "7067--7072",
abstract = "Predicting the persuasiveness of arguments has applications as diverse as writing assistance, essay scoring, and advertising. While clearly relevant to the task, the personal characteristics of an argument`s source and audience have not yet been fully exploited toward automated persuasiveness prediction. In this paper, we model debaters' prior beliefs, interests, and personality traits based on their previous activity, without dependence on explicit user profiles or questionnaires. Using a dataset of over 60,000 argumentative discussions, comprising more than three million individual posts collected from the subreddit r/ChangeMyView, we demonstrate that our modeling of debater`s characteristics enhances the prediction of argument persuasiveness as well as of debaters' resistance to persuasion."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="al-khatib-etal-2020-exploiting">
<titleInfo>
<title>Exploiting Personal Characteristics of Debaters for Predicting Persuasiveness</title>
</titleInfo>
<name type="personal">
<namePart type="given">Khalid</namePart>
<namePart type="family">Al Khatib</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Völske</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shahbaz</namePart>
<namePart type="family">Syed</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikolay</namePart>
<namePart type="family">Kolyada</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benno</namePart>
<namePart type="family">Stein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Predicting the persuasiveness of arguments has applications as diverse as writing assistance, essay scoring, and advertising. While clearly relevant to the task, the personal characteristics of an argument‘s source and audience have not yet been fully exploited toward automated persuasiveness prediction. In this paper, we model debaters’ prior beliefs, interests, and personality traits based on their previous activity, without dependence on explicit user profiles or questionnaires. Using a dataset of over 60,000 argumentative discussions, comprising more than three million individual posts collected from the subreddit r/ChangeMyView, we demonstrate that our modeling of debater‘s characteristics enhances the prediction of argument persuasiveness as well as of debaters’ resistance to persuasion.</abstract>
<identifier type="citekey">al-khatib-etal-2020-exploiting</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.632</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.632/</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>7067</start>
<end>7072</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploiting Personal Characteristics of Debaters for Predicting Persuasiveness
%A Al Khatib, Khalid
%A Völske, Michael
%A Syed, Shahbaz
%A Kolyada, Nikolay
%A Stein, Benno
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F al-khatib-etal-2020-exploiting
%X Predicting the persuasiveness of arguments has applications as diverse as writing assistance, essay scoring, and advertising. While clearly relevant to the task, the personal characteristics of an argument‘s source and audience have not yet been fully exploited toward automated persuasiveness prediction. In this paper, we model debaters’ prior beliefs, interests, and personality traits based on their previous activity, without dependence on explicit user profiles or questionnaires. Using a dataset of over 60,000 argumentative discussions, comprising more than three million individual posts collected from the subreddit r/ChangeMyView, we demonstrate that our modeling of debater‘s characteristics enhances the prediction of argument persuasiveness as well as of debaters’ resistance to persuasion.
%R 10.18653/v1/2020.acl-main.632
%U https://aclanthology.org/2020.acl-main.632/
%U https://doi.org/10.18653/v1/2020.acl-main.632
%P 7067-7072
Markdown (Informal)
[Exploiting Personal Characteristics of Debaters for Predicting Persuasiveness](https://aclanthology.org/2020.acl-main.632/) (Al Khatib et al., ACL 2020)
ACL