@inproceedings{yan-etal-2020-multi-source,
title = "Multi-source Meta Transfer for Low Resource Multiple-Choice Question Answering",
author = "Yan, Ming and
Zhang, Hao and
Jin, Di and
Zhou, Joey Tianyi",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.654",
doi = "10.18653/v1/2020.acl-main.654",
pages = "7331--7341",
abstract = "Multiple-choice question answering (MCQA) is one of the most challenging tasks in machine reading comprehension since it requires more advanced reading comprehension skills such as logical reasoning, summarization, and arithmetic operations. Unfortunately, most existing MCQA datasets are small in size, which increases the difficulty of model learning and generalization. To address this challenge, we propose a multi-source meta transfer (MMT) for low-resource MCQA. In this framework, we first extend meta learning by incorporating multiple training sources to learn a generalized feature representation across domains. To bridge the distribution gap between training sources and the target, we further introduce the meta transfer that can be integrated into the multi-source meta training. More importantly, the proposed MMT is independent of backbone language models. Extensive experiments demonstrate the superiority of MMT over state-of-the-arts, and continuous improvements can be achieved on different backbone networks on both supervised and unsupervised domain adaptation settings.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="yan-etal-2020-multi-source">
<titleInfo>
<title>Multi-source Meta Transfer for Low Resource Multiple-Choice Question Answering</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ming</namePart>
<namePart type="family">Yan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hao</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Di</namePart>
<namePart type="family">Jin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joey</namePart>
<namePart type="given">Tianyi</namePart>
<namePart type="family">Zhou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Multiple-choice question answering (MCQA) is one of the most challenging tasks in machine reading comprehension since it requires more advanced reading comprehension skills such as logical reasoning, summarization, and arithmetic operations. Unfortunately, most existing MCQA datasets are small in size, which increases the difficulty of model learning and generalization. To address this challenge, we propose a multi-source meta transfer (MMT) for low-resource MCQA. In this framework, we first extend meta learning by incorporating multiple training sources to learn a generalized feature representation across domains. To bridge the distribution gap between training sources and the target, we further introduce the meta transfer that can be integrated into the multi-source meta training. More importantly, the proposed MMT is independent of backbone language models. Extensive experiments demonstrate the superiority of MMT over state-of-the-arts, and continuous improvements can be achieved on different backbone networks on both supervised and unsupervised domain adaptation settings.</abstract>
<identifier type="citekey">yan-etal-2020-multi-source</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.654</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.654</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>7331</start>
<end>7341</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Multi-source Meta Transfer for Low Resource Multiple-Choice Question Answering
%A Yan, Ming
%A Zhang, Hao
%A Jin, Di
%A Zhou, Joey Tianyi
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F yan-etal-2020-multi-source
%X Multiple-choice question answering (MCQA) is one of the most challenging tasks in machine reading comprehension since it requires more advanced reading comprehension skills such as logical reasoning, summarization, and arithmetic operations. Unfortunately, most existing MCQA datasets are small in size, which increases the difficulty of model learning and generalization. To address this challenge, we propose a multi-source meta transfer (MMT) for low-resource MCQA. In this framework, we first extend meta learning by incorporating multiple training sources to learn a generalized feature representation across domains. To bridge the distribution gap between training sources and the target, we further introduce the meta transfer that can be integrated into the multi-source meta training. More importantly, the proposed MMT is independent of backbone language models. Extensive experiments demonstrate the superiority of MMT over state-of-the-arts, and continuous improvements can be achieved on different backbone networks on both supervised and unsupervised domain adaptation settings.
%R 10.18653/v1/2020.acl-main.654
%U https://aclanthology.org/2020.acl-main.654
%U https://doi.org/10.18653/v1/2020.acl-main.654
%P 7331-7341
Markdown (Informal)
[Multi-source Meta Transfer for Low Resource Multiple-Choice Question Answering](https://aclanthology.org/2020.acl-main.654) (Yan et al., ACL 2020)
ACL