@inproceedings{you-etal-2020-hard,
title = "Hard-Coded {G}aussian Attention for Neural Machine Translation",
author = "You, Weiqiu and
Sun, Simeng and
Iyyer, Mohit",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.687",
doi = "10.18653/v1/2020.acl-main.687",
pages = "7689--7700",
abstract = "Recent work has questioned the importance of the Transformer{'}s multi-headed attention for achieving high translation quality. We push further in this direction by developing a {``}hard-coded{''} attention variant without any learned parameters. Surprisingly, replacing all learned self-attention heads in the encoder and decoder with fixed, input-agnostic Gaussian distributions minimally impacts BLEU scores across four different language pairs. However, additionally, hard-coding cross attention (which connects the decoder to the encoder) significantly lowers BLEU, suggesting that it is more important than self-attention. Much of this BLEU drop can be recovered by adding just a single learned cross attention head to an otherwise hard-coded Transformer. Taken as a whole, our results offer insight into which components of the Transformer are actually important, which we hope will guide future work into the development of simpler and more efficient attention-based models.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="you-etal-2020-hard">
<titleInfo>
<title>Hard-Coded Gaussian Attention for Neural Machine Translation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Weiqiu</namePart>
<namePart type="family">You</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Simeng</namePart>
<namePart type="family">Sun</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mohit</namePart>
<namePart type="family">Iyyer</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Recent work has questioned the importance of the Transformer’s multi-headed attention for achieving high translation quality. We push further in this direction by developing a “hard-coded” attention variant without any learned parameters. Surprisingly, replacing all learned self-attention heads in the encoder and decoder with fixed, input-agnostic Gaussian distributions minimally impacts BLEU scores across four different language pairs. However, additionally, hard-coding cross attention (which connects the decoder to the encoder) significantly lowers BLEU, suggesting that it is more important than self-attention. Much of this BLEU drop can be recovered by adding just a single learned cross attention head to an otherwise hard-coded Transformer. Taken as a whole, our results offer insight into which components of the Transformer are actually important, which we hope will guide future work into the development of simpler and more efficient attention-based models.</abstract>
<identifier type="citekey">you-etal-2020-hard</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.687</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.687</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>7689</start>
<end>7700</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Hard-Coded Gaussian Attention for Neural Machine Translation
%A You, Weiqiu
%A Sun, Simeng
%A Iyyer, Mohit
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F you-etal-2020-hard
%X Recent work has questioned the importance of the Transformer’s multi-headed attention for achieving high translation quality. We push further in this direction by developing a “hard-coded” attention variant without any learned parameters. Surprisingly, replacing all learned self-attention heads in the encoder and decoder with fixed, input-agnostic Gaussian distributions minimally impacts BLEU scores across four different language pairs. However, additionally, hard-coding cross attention (which connects the decoder to the encoder) significantly lowers BLEU, suggesting that it is more important than self-attention. Much of this BLEU drop can be recovered by adding just a single learned cross attention head to an otherwise hard-coded Transformer. Taken as a whole, our results offer insight into which components of the Transformer are actually important, which we hope will guide future work into the development of simpler and more efficient attention-based models.
%R 10.18653/v1/2020.acl-main.687
%U https://aclanthology.org/2020.acl-main.687
%U https://doi.org/10.18653/v1/2020.acl-main.687
%P 7689-7700
Markdown (Informal)
[Hard-Coded Gaussian Attention for Neural Machine Translation](https://aclanthology.org/2020.acl-main.687) (You et al., ACL 2020)
ACL