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Figure 2: A confusion matrix for clustering with k=5
using BERT-base.

2.5 Results and Discussion

As can be seen in Table 1, pre-trained language
models are indeed highly capable of generating
sentence representations that cluster by domains,
resulting in up to 87.66%, 89.04% and 89.94% ac-
curacy when using k=5, k=10 and k=15 clusters,
respectively, across 10,000 sentences in 5 domains.
We find these scores remarkably high given our
straight-forward average-pooling strategy and that
no domain-supervision was involved in the process
of learning the pre-trained representations. Figure
3 also demonstrates the quality of the obtained clus-
ters in 2D using the BERT-base model, where the
ellipses describe the mean and variance parameters
learned for each cluster by the GMM with k = 5.7

We note that some classes of models did better
than others: while all vector-based models did far
better than the random and LDA baselines8, the
MLM-based models dominated in all cases over
word2vec and the auto-regressive models. This
may be explained by the fact that the MLM-based
models use the entire sentence context when gen-
erating the representations for each token, while
the auto-regressive models only use the past con-
text, and word2vec uses a limited window context.
Using PCA improved performance in most cases
and especially for the auto-regressive models, al-
though the results for the MLMs remain high in

7Similar visualizations for additional models are available
in the supplementary material.

8Note that the LDA models were trained using the multi-
domain data alone, and did not utilize additional pretraining
as in the other, more successful models. This may explain
their relatively weak performance.

both cases – suggesting that these models encode
the information very differently.

2.6 Analysis

As can be seen in Figure 3, in some areas the do-
mains are somewhat overlapping in the embedding
space, which may lead to outlier cases where ex-
amples from one domain are assigned to a cluster
of a another domain. We plot a confusion matrix
(Figure 2) to analyze this further based on the clus-
tering with BERT-base and k=5. We first note that
the outlier sentences are much shorter than the av-
erage sentence length in the corpus (11.62 tokens
on average for outliers vs. 20.5 tokens on average
in general). This makes sense as shorter sentences
contain less information, making it harder to assign
them to an appropriate cluster. Table 2 shows ex-
amples of outlier sentences, assigned to clusters of
domains different from their originating domain.
We can see that in many cases the assignments are
sensible – for example for sentences originating
from the subtitles corpus, a sentence that mentions
“great priest” is assigned to the Koran cluster, a
sentence that mentions “The International Criminal
Court in The Hague” is assigned to the Law cluster,
a sentence that mentions “the virus” is assigned to
the Medical cluster and so on. This strengthens our
claim that defining domains based on the corpus
they originated from is over-simplistic, and using
a data-driven approach may enable to find better
domain assignments across different corpora.

The domain that attracted the largest number
of outliers is the IT domain cluster, with 597 sen-
tences assigned to it from other domains. Looking

Figure 3: A 2D visualization of the unsupervised GMM
clustering for the same sentences as in Figure 1.
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Subtitles assigned to Koran Subtitles assigned to Medical
I am Spa’am, high priest of the boars. Oxygen supply at 50%.
Joseph, go in peace, and the Lord be with you. Or it can help her walk again if the virus is kept in check

with this.
Subtitles assigned to IT Subtitles assigned to Law

Push it up to the front of the screen. Statutes, transcripts, redacted immunity agreements.
Polyalloy requires programming to take permanent The Security Council therefore must press for his immediate
form. referral to the International Criminal Court in The Hague.

Law assigned to Medical Law assigned to IT
- Viruses and virus-like organisms ”INFORMATION SOCIETY STATISTICS
where the glucose content is equal to or less than This document must be attached to the certificate and field
the fructose content. with it, except where there is a computerised checking system.

Medical assigned to Law Medical assigned to IT
This will be introduced by a Regulation adopted by the An updated and improved version of the CD-ROM was issued
European Commission. to all subscribers during the first half of the year.
The marketing authorisation was renewed on 22 May - All tables will be based on generic and not product-specific
2002 and 22 May 2007. data.

IT assigned to Medical IT assigned to Subtitles
R65: Harmful: may cause lung damage if swallowed At the end we say good bye.
Automatic Red-Eye Removal What would you like to do for your next shot?

Table 2: Sentences from one domain which were assigned to another domain by the BERT-based clustering, k=5.

more closely we find that more than half of these
sentences (340 out of 597) included numbers (e.g.
“34% 25% 34%” (from medical), “(b) reference
number 20 is deleted;” (from law), “(Command of
Prostration # 1)” (from Koran) or “The message,
R2.” (from subtitles)). As numbers appear in many
different contexts, they may be harder to assign to
a specific domain by the context-aware language
models in such short sentences. The second largest
attractor of outliers is the Subtitles cluster, with
372 sentences assigned to it from other domains.
We find that most of these sentences contain per-
sonal pronouns or question marks (228 out of 372,
61.2%) while the ratio of such sentences in the en-
tire corpus is only 40%. Examples include “Why
did you choose the name & amarok;?” (from IT),
or “What is Avonex?” (from Medical). This may
be expected as the subtitles corpus mainly includes
transcriptions of spoken, conversational language,
and “conversation tends to have more verbs, more
personal pronouns, and more questions” (Conrad
and Biber, 2005). Another possible reason for the
subtitles domain to attract outliers is the fact that
this is the least-topical cluster: movies and TV
series may discuss diverse topics, unlike medical,
religious, legal and technical texts that may have a
more cohesive topic.

3 Neural Machine Translation in a
Multi-Domain Scenario

As we showed that pre-trained language models
are indeed very useful in clustering sentence repre-
sentations by domains in an unsupervised manner,
we now seek to harness this property for a down-

stream task – domain data selection for machine
translation. Domain data selection is the task of
selecting examples from a large corpus which are
as close as possible to the domain of interest, given
a smaller set of in-domain examples. The selected
examples can be used to either (1) train a domain-
specific model from scratch (Axelrod et al., 2011),
(2) fine-tune a pre-trained general-domain model
(Sajjad et al., 2017; Silva et al., 2018), or (3) prior-
itize data for annotation as in an Active-Learning
framework, if only monolingual data is available
(Haffari et al., 2009). To demonstrate the need for
domain data selection and set the stage for our data
selection experiments, we perform preliminary ex-
periments with NMT in a multi-domain scenario.

3.1 Multi-Domain Dataset
To simulate a diverse multi-domain setting we use
the dataset proposed in Koehn and Knowles (2017),
as it was recently adopted for domain adaptation
research in NMT (Hu et al., 2019; Müller et al.,
2019; Dou et al., 2019a,b). The dataset includes
parallel text in German and English from five di-
verse domains (Medical, Law, Koran, IT, Subtitles;
as discussed in Section 2), available via OPUS
(Tiedemann, 2012; Aulamo and Tiedemann, 2019).

In a preliminary analysis of the data we found
that in both the original train/dev/test split by
Koehn and Knowles (2017) and in the more re-
cent split by Müller et al. (2019) there was overlap
between the training data and the dev/test data.9

Fixing these issues is important, as it may affect
the conclusions one draws from experiments with

9More details are available in the supplementary material.
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Original New Split
Medical 1,104,752 248,099

Law 715,372 467,309
IT 378,477 222,927

Koran 533,128 17,982
Subtitles 22,508,639 14,458,058

Table 3: Number of training examples for each domain
in the original split (Müller et al., 2019) and in our split.

this dataset. For example, as overlapping devel-
opment sets favor memorization of the training
set, one may choose checkpoints and report results
on over-fitting models. This is especially relevant
with neural sequence-to-sequence models, as they
are highly susceptible to memorization (Aharoni
and Goldberg, 2018) and hallucination (Lee et al.,
2018), as confirmed by Müller et al. (2019).

To create a better experimental setting to test
generalization within and across domains, we cre-
ate a new data split where we ensure that no such
overlap between the training, development and test
sets occur. We started from the split of Müller
et al. (2019) as it included newer versions of some
of the datasets.10 Furthermore, we did not allow
more than one translation of a given source or tar-
get sentence, as such cases were very frequent in
the dataset and usually stand for duplicate sentence
pairs (See Table 3). For example, applying this
filtering reduced the size of the Koran corpus from
533,128 sentence pairs to only 17,982. Finally,
following Müller et al. (2019) we cap the subti-
tles corpus to 500,000 sentence pairs as it is much
larger than the rest. We make the new split pub-
licly available and hope it will enable better future
experimentation on this important subject.11

3.2 Cross-Domain Experiments

Experimental Setup We follow Hu et al. (2019)
and train domain-specific models for all domains.
We then evaluate each model across the different
domain test sets, enabling us to understand the ef-
fect of different domains on the downstream MT
performance and to set up strong baselines for data
selection experiments. We also train a general-
domain model using the available data from all
domains, as it is also a common approach in multi-
domain scenarios (Müller et al., 2019). In all ex-
periments we use a similar Transformer (Vaswani
et al., 2017) model, and only control for the train-

10Their dataset is available in: https://github.com/
ZurichNLP/domain-robustness

11https://github.com/roeeaharoni/
unsupervised-domain-clusters

Medical Law Koran IT Subtitles
Medical 56.5 18.3 1.9 11.4 4.3

Law 21.7 59 2.7 13.1 5.4
Koran 0.1 0.2 15.9 0.2 0.5

IT 14.9 9.6 2.8 43 8.6
Subtitles 7.9 5.5 6.4 8.5 27.3

All 53.3 57.2 20.9 42.1 27.6

Table 4: SacreBLEU (Post, 2018) scores of our base-
line systems on the test sets of the new data split. Each
row represents the results from one model on each test
set. The best result in each column is marked in bold.

ing data. More details on the exact training and
hyperparameter settings for the NMT models are
available in the supplementary material.

Results The results for the cross-domain evalua-
tion are available in Table 4. In most cases, the best
results for each domain are obtained by training on
the in-domain data. Training on all the available
data helped mostly for the Koran test set. This is
expected as the training data for this domain is con-
siderably smaller than the training data for rest of
the domains (Table 3). We can also see that more
data is not necessarily better (Gascó et al., 2012):
while the subtitles corpus is the largest of all 5 and
includes 500,000 sentence pairs, it is second to last
in performance as measured by the average BLEU
across all test sets.

Cross-Domain BLEU vs. Cluster Proximity
An interesting observation can be made with re-
spect to the visual analysis of the domain clusters
as depicted in Figure 3: as the Medical cluster
(in Yellow), Law cluster (in Purple) and IT cluster
(in Red) are close to each other in the embedding
space, their cross-domain BLEU scores are also
higher. For example, note how in the results for the
Medical domain-specific model (first row in Table
4), the BLEU scores on the Law and IT test sets are
much higher in comparison to those on the Koran
and Subtitles test sets, which clusters are farther
away in the visualized embedding space. Similarly,
as the Subtitles cluster (Blue) is closer to the Koran
cluster (Green), the highest cross-domain BLEU
score on the Koran test set is from the Subtitles
model. To further quantify this phenomenon, we
plot and measure Pearson’s correlation between the
cosine similarity of the centroids for the English
BERT-based dev sentence representations for each
domain pair, and the cross-domain BLEU score for
this domain pair. This is shown in Figure 4. We can
see the general trend where the closer the domain
centroids are (with a similarity of 1 for training
and evaluating on the same domain), the higher
the cross-domain BLEU is between those domains,

https://github.com/ZurichNLP/domain-robustness
https://github.com/ZurichNLP/domain-robustness
https://github.com/roeeaharoni/unsupervised-domain-clusters
https://github.com/roeeaharoni/unsupervised-domain-clusters
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Figure 4: The cosine similarity between the centroids
of the BERT representations for each domain pair vs.
the corresponding cross-domain BLEU.

resulting in a Pearson’s correlation of 0.81 (strong
correlation). This suggests that such preliminary
visual analysis can be a useful tool for understand-
ing the relationship between diverse datasets, and
motivates the use of pre-trained language model
representations for domain data selection in MT.

4 Domain Data Selection with Pretrained
Language Models

As shown in the previous section, using the right
data is critical for achieving good performance on
an in-domain test set, and more data is not neces-
sarily better. However, in real-world scenarios, the
availability of data labeled by domain is limited,
e.g. when working with large scale, web-crawled
data. In this section we focus on a data-selection
scenario where only a very small number of in-
domain sentences are used to select data from a
larger unlabeled parallel corpus. An established
method for data selection was proposed by Moore
and Lewis (2010), which was also used in training
the winning systems in WMT 2019 (Ng et al., 2019;
Barrault et al., 2019). This method compares the
cross-entropy, according to domain-specific and
non-domain-specific language models, for each
candidate sentence for selection. The sentences
are then ranked by the cross-entropy difference,
and only the top sentences are selected for training.

While the method by Moore and Lewis (2010)
is tried-and-true, it is based on simple n-gram lan-
guage models which cannot generalize beyond the
n-grams that are seen in the in-domain set. In ad-
dition, it is restricted to the in-domain and general-
domain datasets it is trained on, which are usually
small. On the contrary, pre-trained language mod-
els are trained on massive amounts of text, and, as

we showed through unsupervised clustering, learn
representations with domain-relevant information.
In the following sections, we investigate whether
this property of pretrained language models makes
them useful for domain data selection.

4.1 Methods
We propose two methods for domain data selection
with pretrained language models.

Domain-Cosine In this method we first compute
a query vector, which is the element-wise average
over the vector representations of the sentences in
the small in-domain set. We use the same sentence-
level average-pooling approach as described in Sec-
tion 2 to obtain sentence representations. We then
retrieve the most relevant sentences in the train-
ing set by computing the cosine similarity of each
sentence with this query vector and ranking the
sentences accordingly.

Domain-Finetune It is now common knowl-
edge that pretrained language models are especially
useful when fine-tuned for the task of interest in
an end-to-end manner (Ruder et al., 2019). In this
method we fine-tune the pretrained LM for binary
classification, where we use the in-domain sen-
tences as positive examples, and randomly sam-
pled general-domain sentences as negative exam-
ples. We then apply this classifier on the general-
domain data and pick the sentences that are classi-
fied as positive as in-domain, or choose the top-k
sentences as ranked by the classifier output distri-
bution. This can be seen as an instance of positive-
unlabeled learning for document-set expansion; see
Jacovi et al. (2019) for a recent discussion and
methodology for this task.

Negative Sampling with Pre-ranking One
problem that may rise when randomly sampling
negative examples is that unlabeled in-domain sen-
tences from the general-domain data may be sam-
pled as negative examples – deteriorating the clas-
sifier performance. To alleviate this issue, we
perform a biased sampling of negative examples.
We first rank the general-domain data using the

without pre-ranking with pre-ranking
p r F1 p r F1

Subtitles 0.722 0.984 0.833 0.964 0.978 0.971
Law 0.761 0.94 0.841 0.944 0.94 0.942

Medical 0.821 0.916 0.866 0.929 0.92 0.925
IT 0.848 0.956 0.898 0.955 0.98 0.967

Koran 0.966 0.958 0.962 0.994 0.974 0.984

Table 5: Ablation analysis showing precision (p) recall
(r) and F1 for the binary classification accuracy on a
held-out set, with and without pre-ranking.
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Medical Law Koran IT Subtitles Average
Random-500k 49.8 53.3 18.5 37.5 25.5 36.92
Moore-Lewis-Top-500k 55 58 21.4 42.7 27.3 40.88
Domain-Cosine-Top-500k 52.7 58 22 42.5 27.1 40.46
Domain-Finetune-Top-500k 54.8 58.8 21.8 43.5 27.4 41.26
Domain-Finetune-Positive 55.3 58.7 19.2 42.5 27 40.54
Oracle 56.5 59 15.9 43 27.3 40.34
All 53.3 57.2 20.9 42.1 27.6 40.22

Table 6: SacreBLEU scores for the data selection experiments. Highest scores per column are marked in bold.

Domain-Cosine method, and then sample negative
examples under a certain threshold in the ranking
(in our experiments we sampled from the bottom
two-thirds). Table 5 shows an ablation for such
pre-ranking, measuring precision, recall and F1
for binary classification on a held-out set for each
domain. When not using pre-ranking, as the train-
ing data for the domain is larger, the precision is
lower – since more in-domain examples are drawn
as negative samples. Using pre-ranking indeed al-
leviates this issue, achieving higher F1 scores in all
cases. Given the results in Table 5 we always use
pre-ranking in the following experiments.

4.2 Experimental Setup

We perform data selection experiments for each do-
main in the multi-domain dataset. As the small set
of monolingual in-domain data we take the 2000
development sentences from each domain. For the
general-domain corpus we concatenate the training
data from all domains, resulting in 1,456,317 sen-
tences. To enable faster experimentation we used
DistilBERT (Sanh et al., 2019) for the Domain-
Cosine and Domain-Finetune methods. More tech-
nical details are available in the supplementary ma-
terial. We compare our methods to four approaches:
(1) The established method by Moore and Lewis
(2010), (2) a random selection baseline, (3) an ora-
cle which is trained on all the available in-domain
data, and (4) the model we train on all the domains
concatenated. We select the top 500k examples to
cover the size of every specific in-domain dataset.
We train Transformer NMT models on the selected
data with a similar configuration to the ones trained
in the cross-domain evaluation.

4.3 Results

The results are available in Table 6. We can see
that all selection methods performed much bet-
ter in terms of BLEU than random selection. It
is also nice to see that all selection methods per-
formed better than using all the available data or
the oracle-selected data when averaged across all

Moore-Lewis D-Cosine D-Finetune
p r p r p r

Medical 0.476 0.955 0.391 0.788 0.485 0.975
Law 0.836 0.894 0.841 0.899 0.902 0.965

Koran 0.35 0.985 0.36 0.989 0.36 0.998
IT 0.441 0.985 0.382 0.857 0.447 0.998

Subtitles 0.899 0.899 0.916 0.916 0.957 0.957
Average 0.6 0.944 0.578 0.89 0.63 0.979

Table 7: Precision (p) and recall (r) for data selection
of 500k sentences with respect to the oracle selection.

domains, showing again that more data is not nec-
essarily better in multi-domain scenarios and that
data selection is a useful approach. Regarding a
comparison of the data selection methods, Moore-
Lewis performed better than Domain-Cosine, while
Domain-Finetune performed best, showing the ben-
efit of fine-tuning large pretrained models for the
data selection task. Using the positively-labeled
examples alone (Domain-Finetune-Positive) per-
formed worse than using the top 500k examples
but better than Domain-Cosine, while not requiring
to determine the number of selected sentences.

4.4 Analysis

We perform an analysis on the selected datasets,
where we measure the precision and recall of sen-
tence selection with respect to the oracle selection.
The results are available in Table 7. As also re-
flected in the BLEU scores, the Domain-Finetune
method resulted in the highest domain recall with a
minimum of 97.5, while Moore-Lewis and Domain-
Cosine scored 89.4 and 78.8 respectively. We find
these results very appealing given that only 2000
in-domain sentences were used for selection for
each domain out of 1.45 million sentences. Also
note that we used DistilBERT in these experiments:
we believe that using larger, non-distilled models
may result in even better selection performance
(although at the price of larger computational re-
quirements).

5 Related Work

Previous works used n-gram LMs for data selection
(Moore and Lewis, 2010; Axelrod et al., 2011) or
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other count-based methods (Axelrod, 2017; Ponce-
las et al., 2018; Parcheta et al., 2018; Santamarı́a
and Axelrod, 2019). While such methods work
well in practice, they cannot generalize beyond the
N-grams observed in the in-domain datasets, which
are usually small.

Duh et al. (2013) proposed to replace n-gram
models with RNN-based LMs with notable im-
provements. However, such methods do not cap-
ture the rich sentence-level global context as in the
recent self-attention-based MLMs; as we showed
in the clustering experiments, autoregressive neural
LMs were inferior to masked LMs in clustering the
data by domain. In addition, training large LMs
may be prohibitive without relying on pre-training.

Regarding domain clustering for MT, Hasler
et al. (2014) discovered topics using LDA instead
of using domain labels. Cuong et al. (2016) in-
duced latent subdomains from the training data
using a dedicated probabilistic model.

Many works used vector-based retrieval for data
selection; Ruder and Plank (2017) learn to select
data using Bayesian optimization, and explored
word2vec for that purpose. Duma and Menzel
(2016) create paragraph vectors for data selection
in the context of SMT. Wang et al. (2017) use in-
ternal representations from the NMT model to per-
form data selection. Bapna and Firat (2019) pro-
pose a mechanism for incorporating retrieved sen-
tences for each instance for domain adaptation in
NMT, using representations extracted from a pre-
trained NMT model. Farajian et al. (2017) explored
instance-based data selection in a multi-domain sce-
nario using information retrieval methods.

Other related works on domain adaptation in-
clude Dou et al. (2019a) that adapts multi-domain
NMT models with domain-aware feature embed-
dings, which are learned via an auxiliary language
modeling task. Peris et al. (2017) proposed neural-
network based classifiers for data selection in SMT.
For more related work on data selection and domain
adaptation in the context of MT, see the surveys by
Eetemadi et al. (2015) for SMT and more recently
Chu and Wang (2018) for NMT.

Unrelated to MT, Ma et al. (2019) used BERT
to select data for tasks from the GLUE benchmark
(Wang et al., 2018). However, they assumed su-
pervision for all the different tasks/domains, while
we propose an unsupervised method requiring only
a small set of in-domain data. Also in the con-
text of pretrained language models, Gururangan

et al. (2020) show the importance of additional pre-
training with in-domain data to improve the down-
stream task-specific performance.

While previous work made important contribu-
tions to domain data selection, our work is the first
to explore massive pretrained language models for
both unsupervised domain clustering and for data
selection in NMT.

6 Conclusions and Future Work

We showed that massive pre-trained language mod-
els are highly effective in mapping data to domains
in a fully-unsupervised manner using average-
pooled sentence representations and GMM-based
clustering. We suggest that such clusters are a more
appropriate, data driven approach to domains in nat-
ural language than simplistic labels (e.g. “medical
text”), and that it will improve over time as better
and larger pretrained LMs will become available.
We proposed new methods to harness this prop-
erty for domain data selection using distance-based
ranking in vector space and pretrained LM fine-
tuning, requiring only a small set of in-domain data.
We demonstrated the effectiveness of our methods
on a new, improved data split we created for a pre-
viously studied multi-domain machine translation
benchmark. Our methods perform similarly or bet-
ter than an established data selection method and
oracle in-domain training across all five domains
in the benchmark.

This work just scratches the surface with what
can be done on the subject; possible avenues for
future work include extending this with multilin-
gual data selection and multilingual LMs (Conneau
and Lample, 2019; Conneau et al., 2019; Wu et al.,
2019; Hu et al., 2020), using such selection meth-
ods with domain-curriculum training (Zhang et al.,
2019; Wang et al., 2019b), applying them on noisy,
web-crawled data (Junczys-Dowmunt, 2018) or for
additional tasks (Gururangan et al., 2020). Another
interesting avenue is applying this to unsupervised
NMT, which is highly sensitive to domain mis-
match (Marchisio et al., 2020; Kim et al., 2020).
We hope this work will encourage more research
on finding the right data for the task, towards more
efficient and robust NLP.
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Sanchis-Trilles, Jesús Andrés-Ferrer, and Francisco
Casacuberta. 2012. Does more data always yield
better translations? In Proceedings of the 13th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pages 152–161,
Avignon, France. Association for Computational
Linguistics.

Yoav Goldberg. 2019. Assessing BERT’s syntactic
abilities. arXiv preprint arXiv:1901.05287.

Suchin Gururangan, Ana Marasovi, Swabha
Swayamdipta, Kyle Lo, Iz Beltagy, Doug Downey,
and Noah A. Smith. 2020. Don’t stop pretraining:
Adapt language models to domains and tasks. ACL.

Gholamreza Haffari, Maxim Roy, and Anoop Sarkar.
2009. Active learning for statistical phrase-based
machine translation. In Proceedings of Human
Language Technologies: The 2009 Annual Confer-
ence of the North American Chapter of the Associa-
tion for Computational Linguistics, pages 415–423,
Boulder, Colorado. Association for Computational
Linguistics.

Eva Hasler, Phil Blunsom, Philipp Koehn, and Barry
Haddow. 2014. Dynamic topic adaptation for
phrase-based MT. In Proceedings of the 14th
Conference of the European Chapter of the Asso-
ciation for Computational Linguistics, pages 328–
337, Gothenburg, Sweden. Association for Compu-
tational Linguistics.

Kenneth Heafield. 2011. KenLM: Faster and smaller
language model queries. In Proceedings of the
Sixth Workshop on Statistical Machine Translation,
pages 187–197, Edinburgh, Scotland. Association
for Computational Linguistics.

Junjie Hu, Sebastian Ruder, Aditya Siddhant, Gra-
ham Neubig, Orhan Firat, and Melvin Johnson.
2020. Xtreme: A massively multilingual multi-task
benchmark for evaluating cross-lingual generaliza-
tion. arXiv preprint arXiv:2003.11080.

Junjie Hu, Mengzhou Xia, Graham Neubig, and Jaime
Carbonell. 2019. Domain adaptation of neural ma-
chine translation by lexicon induction. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, Florence, Italy. Asso-
ciation for Computational Linguistics.

Alon Jacovi, Gang Niu, Yoav Goldberg, and Masashi
Sugiyama. 2019. Scalable evaluation and im-
provement of document set expansion via neu-
ral positive-unlabeled learning. arXiv preprint
arXiv:1910.13339.

Marcin Junczys-Dowmunt. 2018. Dual conditional
cross-entropy filtering of noisy parallel corpora. In
Proceedings of the Third Conference on Machine
Translation: Shared Task Papers, pages 888–895,
Belgium, Brussels. Association for Computational
Linguistics.

Yunsu Kim, Miguel Graça, and Hermann Ney. 2020.
When and why is unsupervised neural machine trans-
lation useless? arXiv preprint arXiv:2004.10581.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondřej Bojar, Alexandra
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A Appendix

A.1 NMT Training

Figure 5 details the hyperparameter configuration
we used to train the NMT models. We use Trans-
former models (Vaswani et al., 2017) in the Base
configuration using the implementation provided
in Fairseq (Ott et al., 2019). For all models we
use a joint BPE vocabulary (Sennrich et al., 2016)
learned with 32k merge operations over the con-
catenated corpus in both languages, enabling to tie
all the embedding layers (Press and Wolf, 2017).12

We perform early stopping if the BLEU score on
the domain-specific development set did not im-
prove in 10 consequent checkpoints. We use the
ADAM (Kingma and Ba, 2014) optimizer with an
initial learning rate of 5 · 10−4 and a maximum
of 4096 tokens per batch. We trained all models
on a single NVIDIA GPU. We decode using beam
search with a beam size of 5. For pre-processing
we used the Moses (Koehn et al., 2007) pipeline in-
cluding tokenization, normalize-punctuation, non-
printing character removal, truecasing and cleaning.
We removed examples with sequences longer than
100 tokens from the training data (before subword
segmentation).

A.2 Data Split

Table 8 shows details about the overlap between the
training, development and test sets for the different
data splits of the multi-domain dataset. The overlap
was computed using the English part of the corpus.

A.3 GMM Clustering

We learn GMMs with full covariance matrices, i.e.
without constraints on covariance matrices that de-
termine the shape of each component in the mix-
ture, as implemented in scikit-learn (Pedregosa
et al., 2011). We train the models until conver-
gence or for a maximum of 150 EM iterations.

A.4 Language Model Finetuning

We fine-tune the binary classification head for 5
epochs. We use the ADAM (Kingma and Ba, 2014)
optimizer with an initial learning rate of 2 · 10−5.
We train the model using 4 NVIDIA GPUs with
256 sentences per batch (64 per GPU).

12We used the implementation in https://github.
com/rsennrich/subword-nmt

CUDA_VISIBLE_DEVICES=0 \
python $FAIRSEQ_PATH/train.py ${BINARIZED_DATA_DIR} \

--arch transformer_wmt_en_de \
--share-all-embeddings \
--optimizer adam \
--adam-betas ’(0.9, 0.98)’ \
--clip-norm 1.0 \
--lr 0.0005 \
--lr-scheduler inverse_sqrt \
--warmup-updates 4000 \
--warmup-init-lr 1e-07 \
--dropout 0.2 \
--weight-decay 0.0 \
--criterion label_smoothed_cross_entropy \
--label-smoothing 0.1 \
--max-tokens 4096 \
--update-freq 5 \
--attention-dropout 0.2 \
--activation-dropout 0.2 \
--max-epoch 200 \
--seed 17 \
-s $src \
-t $tgt \
--save-dir $MODEL_PATH \
--save-interval-updates 10000 \
--validate-interval 1

Figure 5: The hyperparameter configuration we used
for NMT model training using Fairseq (Ott et al.,
2019).

A.5 Moore-Lewis Implementation
We used the implementation of Moore and
Lewis (2010) by Pamela Shapiro, as avail-
able in: https://github.com/pamelashapiro/

moore-lewis. This implementation uses the
KenLM N-Gram language model toolkit (Heafield,
2011).

A.6 Additional Visualizations
Figure 6 shows visualizations of the multi-domain
dataset from additional pre-trained masked lan-
guage models (BERT large and RoBERTa), and
Figure 7 shows the same visualization for autore-
gressive models (XLNet and GPT2).

https://github.com/rsennrich/subword-nmt
https://github.com/rsennrich/subword-nmt
https://github.com/pamelashapiro/moore-lewis
https://github.com/pamelashapiro/moore-lewis
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Koehn and Knowles (2017) Müller et al. (2019) New Split

% dev
in train

Medical 1090/2000 (54.5%) 1204/2000 (60.2%) 0/2000
Koran 0/2000 1926/2000 (96.3) 0/2000

Subtitles 1183/5000 (23.66%) 638/2000 (31.9%) 0/2000
Law 595/2000 (29.75%) 1000/2000 (50%) 0/2000
IT 2496/2526 (98.81%) 783/2000 (39.15%) 0/2000

% test
in train

Medical 571/2000 (28.55%) 516/1691 (30.51%) 0/2000
Koran 0/2000 1949/2000 (97.45%) 0/2000

Subtitles 451/5000 (9.02%) 478/2000 (23.9%) 0/2000
Law 649/2000 (32.45%) 966/2000 (48.3%) 0/2000
IT 945/1856 (50.92%) 1036/2000 (51.8%) 0/2000

Table 8: Details about the different data splits for the multi-domain corpus.
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Figure 6: 2D visualizations of the unsupervised GMM-based clustering for different pretrained MLMs.
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Figure 7: 2D visualizations of the unsupervised GMM-based clustering for different pretrained auto-regressive
LMs.


