@inproceedings{arora-etal-2020-supervised,
title = "Supervised Grapheme-to-Phoneme Conversion of Orthographic Schwas in {H}indi and {P}unjabi",
author = "Arora, Aryaman and
Gessler, Luke and
Schneider, Nathan",
editor = "Jurafsky, Dan and
Chai, Joyce and
Schluter, Natalie and
Tetreault, Joel",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-main.696",
doi = "10.18653/v1/2020.acl-main.696",
pages = "7791--7795",
abstract = "Hindi grapheme-to-phoneme (G2P) conversion is mostly trivial, with one exception: whether a schwa represented in the orthography is pronounced or unpronounced (deleted). Previous work has attempted to predict schwa deletion in a rule-based fashion using prosodic or phonetic analysis. We present the first statistical schwa deletion classifier for Hindi, which relies solely on the orthography as the input and outperforms previous approaches. We trained our model on a newly-compiled pronunciation lexicon extracted from various online dictionaries. Our best Hindi model achieves state of the art performance, and also achieves good performance on a closely related language, Punjabi, without modification.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="arora-etal-2020-supervised">
<titleInfo>
<title>Supervised Grapheme-to-Phoneme Conversion of Orthographic Schwas in Hindi and Punjabi</title>
</titleInfo>
<name type="personal">
<namePart type="given">Aryaman</namePart>
<namePart type="family">Arora</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Luke</namePart>
<namePart type="family">Gessler</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nathan</namePart>
<namePart type="family">Schneider</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Dan</namePart>
<namePart type="family">Jurafsky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joyce</namePart>
<namePart type="family">Chai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Natalie</namePart>
<namePart type="family">Schluter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Hindi grapheme-to-phoneme (G2P) conversion is mostly trivial, with one exception: whether a schwa represented in the orthography is pronounced or unpronounced (deleted). Previous work has attempted to predict schwa deletion in a rule-based fashion using prosodic or phonetic analysis. We present the first statistical schwa deletion classifier for Hindi, which relies solely on the orthography as the input and outperforms previous approaches. We trained our model on a newly-compiled pronunciation lexicon extracted from various online dictionaries. Our best Hindi model achieves state of the art performance, and also achieves good performance on a closely related language, Punjabi, without modification.</abstract>
<identifier type="citekey">arora-etal-2020-supervised</identifier>
<identifier type="doi">10.18653/v1/2020.acl-main.696</identifier>
<location>
<url>https://aclanthology.org/2020.acl-main.696</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>7791</start>
<end>7795</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Supervised Grapheme-to-Phoneme Conversion of Orthographic Schwas in Hindi and Punjabi
%A Arora, Aryaman
%A Gessler, Luke
%A Schneider, Nathan
%Y Jurafsky, Dan
%Y Chai, Joyce
%Y Schluter, Natalie
%Y Tetreault, Joel
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F arora-etal-2020-supervised
%X Hindi grapheme-to-phoneme (G2P) conversion is mostly trivial, with one exception: whether a schwa represented in the orthography is pronounced or unpronounced (deleted). Previous work has attempted to predict schwa deletion in a rule-based fashion using prosodic or phonetic analysis. We present the first statistical schwa deletion classifier for Hindi, which relies solely on the orthography as the input and outperforms previous approaches. We trained our model on a newly-compiled pronunciation lexicon extracted from various online dictionaries. Our best Hindi model achieves state of the art performance, and also achieves good performance on a closely related language, Punjabi, without modification.
%R 10.18653/v1/2020.acl-main.696
%U https://aclanthology.org/2020.acl-main.696
%U https://doi.org/10.18653/v1/2020.acl-main.696
%P 7791-7795
Markdown (Informal)
[Supervised Grapheme-to-Phoneme Conversion of Orthographic Schwas in Hindi and Punjabi](https://aclanthology.org/2020.acl-main.696) (Arora et al., ACL 2020)
ACL