@inproceedings{kvapilikova-etal-2020-unsupervised,
title = "Unsupervised Multilingual Sentence Embeddings for Parallel Corpus Mining",
author = "Kvapil{\'\i}kov{\'a}, Ivana and
Artetxe, Mikel and
Labaka, Gorka and
Agirre, Eneko and
Bojar, Ond{\v{r}}ej",
editor = "Rijhwani, Shruti and
Liu, Jiangming and
Wang, Yizhong and
Dror, Rotem",
booktitle = "Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop",
month = jul,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.acl-srw.34",
doi = "10.18653/v1/2020.acl-srw.34",
pages = "255--262",
abstract = "Existing models of multilingual sentence embeddings require large parallel data resources which are not available for low-resource languages. We propose a novel unsupervised method to derive multilingual sentence embeddings relying only on monolingual data. We first produce a synthetic parallel corpus using unsupervised machine translation, and use it to fine-tune a pretrained cross-lingual masked language model (XLM) to derive the multilingual sentence representations. The quality of the representations is evaluated on two parallel corpus mining tasks with improvements of up to 22 F1 points over vanilla XLM. In addition, we observe that a single synthetic bilingual corpus is able to improve results for other language pairs.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kvapilikova-etal-2020-unsupervised">
<titleInfo>
<title>Unsupervised Multilingual Sentence Embeddings for Parallel Corpus Mining</title>
</titleInfo>
<name type="personal">
<namePart type="given">Ivana</namePart>
<namePart type="family">Kvapilíková</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mikel</namePart>
<namePart type="family">Artetxe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Gorka</namePart>
<namePart type="family">Labaka</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Eneko</namePart>
<namePart type="family">Agirre</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ondřej</namePart>
<namePart type="family">Bojar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Shruti</namePart>
<namePart type="family">Rijhwani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiangming</namePart>
<namePart type="family">Liu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yizhong</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Rotem</namePart>
<namePart type="family">Dror</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Existing models of multilingual sentence embeddings require large parallel data resources which are not available for low-resource languages. We propose a novel unsupervised method to derive multilingual sentence embeddings relying only on monolingual data. We first produce a synthetic parallel corpus using unsupervised machine translation, and use it to fine-tune a pretrained cross-lingual masked language model (XLM) to derive the multilingual sentence representations. The quality of the representations is evaluated on two parallel corpus mining tasks with improvements of up to 22 F1 points over vanilla XLM. In addition, we observe that a single synthetic bilingual corpus is able to improve results for other language pairs.</abstract>
<identifier type="citekey">kvapilikova-etal-2020-unsupervised</identifier>
<identifier type="doi">10.18653/v1/2020.acl-srw.34</identifier>
<location>
<url>https://aclanthology.org/2020.acl-srw.34</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>255</start>
<end>262</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Unsupervised Multilingual Sentence Embeddings for Parallel Corpus Mining
%A Kvapilíková, Ivana
%A Artetxe, Mikel
%A Labaka, Gorka
%A Agirre, Eneko
%A Bojar, Ondřej
%Y Rijhwani, Shruti
%Y Liu, Jiangming
%Y Wang, Yizhong
%Y Dror, Rotem
%S Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics: Student Research Workshop
%D 2020
%8 July
%I Association for Computational Linguistics
%C Online
%F kvapilikova-etal-2020-unsupervised
%X Existing models of multilingual sentence embeddings require large parallel data resources which are not available for low-resource languages. We propose a novel unsupervised method to derive multilingual sentence embeddings relying only on monolingual data. We first produce a synthetic parallel corpus using unsupervised machine translation, and use it to fine-tune a pretrained cross-lingual masked language model (XLM) to derive the multilingual sentence representations. The quality of the representations is evaluated on two parallel corpus mining tasks with improvements of up to 22 F1 points over vanilla XLM. In addition, we observe that a single synthetic bilingual corpus is able to improve results for other language pairs.
%R 10.18653/v1/2020.acl-srw.34
%U https://aclanthology.org/2020.acl-srw.34
%U https://doi.org/10.18653/v1/2020.acl-srw.34
%P 255-262
Markdown (Informal)
[Unsupervised Multilingual Sentence Embeddings for Parallel Corpus Mining](https://aclanthology.org/2020.acl-srw.34) (Kvapilíková et al., ACL 2020)
ACL