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Abstract
We cast the problem of event annotation as one of text categorization, and compare state of the art text categorization techniques on event
data produced within the Uppsala Conflict Data Program (UCDP). Annotating a single text involves assigning the labels pertaining to at
least 17 distinct categorization tasks, e.g., who were the attacking organization, who was attacked, and where did the event take place.
The text categorization techniques under scrutiny are a classical Bag-of-Words approach; character-based contextualized embeddings
produced by ELMo; embeddings produced by the BERT base model, and a version of BERT base fine-tuned on UCDP data; and a
pre-trained and fine-tuned classifier based on ULMFiT. The categorization tasks are very diverse in terms of the number of classes to
predict as well as the skewness of the distribution of classes. The categorization results exhibit a large variability across tasks, ranging
from 30.3% to 99.8% F1-score.
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1. Introduction
This study concerns the application of automatic text cate-
gorization techniques for the purpose of conflict event an-
notation using the data of the Uppsala Conflict Data Pro-
gram.1 In the terminology of UCDP, an event is an instance
of fatal organized violence, defined by Sundberg and Me-
lander (2013) as:

The incidence of the use of armed force by an
organized actor against another organized actor,
or against civilians, resulting in at least 1 direct
death in either the best, low or high estimate cat-
egories at a specific location and for a specific
temporal duration

The present study seeks to investigate the automation of
event annotation by taking advantage of recent advances in
representation and transfer learning to harness the power of
pre-trained and fine-tuned language models for represent-
ing the textual data subject to categorization. The purpose
is to assess the relative performance of text categorization
when the learner has access to language knowledge beyond
that which is present in the training corpus, across a multi-
tude of categorization tasks.

2. Related work
Document categorization, or document classification, con-
sists in assigning one or several pre-defined labels, based
on the contents of a whole document (here, a news arti-
cle). In its simplest form, document categorization does
not require that the ordering of tokens (or even the struc-
tures in which the tokens are arranged) is retained while
extracting information. To the best of our knowledge, such
document categorization introduced in this paper has not
previously been applied to news articles for the purpose of
event coding. Instead, however, sequence classification has
been the focus of several works to automate the event en-
coding from news articles. Sequence classification is first

1https://ucdp.uu.se

based on the extraction of information, that is then used for
attributing the characteristics of an event (such as the dyad2

or the number of deaths) described in a document. Informa-
tion extraction is typically based on classification tasks in
which each unit (character, character sequence or token) in
a text is classified as to whether it refers to a named entity
(actors, location), time, number of casualties, or any other
event characteristics.
In particular, there are several projects aiming at automat-
ing political event coding with sequence classification. The
KEDS (Kansas Event Data System) project (Schrodt et al.,
1994) was one of the first attempts, and was mainly based
on parsing text to extract words that are pre-defined in dic-
tionaries (actors and verbs).
TABARI (Schrodt, 2009) replaced KEDS by introduc-
ing significant improvements such as recognizing passive-
voice sentences or disambiguating verbs that can also be
nouns (e.g., Attack). TABARI was then replaced by Pe-
trarch (Norris et al., 2017) and Universal Petrarch.
Petrarch stands for “Python Engine for Text Resolution
And Related Coding Hierarchy”. As its aforementioned
predecessors, it is also a processing tool for machine-
coding text describing events (i.e. news articles). It is de-
signed to process fully-parsed news summaries, from which
“whom-did-what-to-whom” relations are extracted. The
output is then a dyad and an action. Date and location are
also extracted. Petrarch is typically used by running the
Phoenix pipeline,3 which mainly consists in the following
steps:

1. Extract articles and corresponding date from online
sources using a web scraper4.

2. Encode the sentences with Named Entity Recogni-
tion (NER) using Stanford CoreNLP (Manning et al.,

2“A dyad is made up of two armed and opposing ac-
tors.” See: https://www.pcr.uu.se/research/ucdp/
definitions/

3https://phoenix-pipeline.readthedocs.io/
4https://github.com/openeventdata/scraper

https://ucdp.uu.se
https://www.pcr.uu.se/research/ucdp/definitions/
https://www.pcr.uu.se/research/ucdp/definitions/
https://phoenix-pipeline.readthedocs.io/
https://github.com/openeventdata/scraper
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3. Encode each sentence with [source actor, action, and
target actor] (who does what to whom) using Petrarch.

4. Encode each sentence with a location using CLIFF-
CALVIN (D’Ignazio et al., 2014) or Mordecai (Hal-
terman, 2017).

In all these tools, actors and actions (verbs) are pre-defined
in a specific ontology. Both Petrarch and Universal Pe-
trarch use the same ontology for actors and verbs, based
on TABARI dictionaries. TABARI dictionaries follow
the CAMEO (Conflict and Mediation Event Observations)
framework (Schrodt et al., 2008), which was initially in-
tended as an extension of an ontology from the 60-70s
called WEIS (McClelland, 2006). Another old ontology
is COPDAB (Azar, 1980) in the 1980s. Competing modern
ontologies to CAMEO are the IDEA (Bond et al., 2003) on-
tology from the 2000s, and the JRC-names (Ehrmann et al.,
2017) in the 2010s, developed as a by-product of the EMM
(European Media Monitor) project.
Currently, CAMEO is being replaced by PLOVER,5 a new
ontology with coverage of some new actions, vastly simpli-
fied coding of other actions, and a more flexible system for
extensions and modifications.
Coding systems such as Petrarch and Universal Petrarch are
rule-based: they use rules to decide which noun phrases are
actors and which verb phrases are actions, and then com-
pare these chunks of text against lists of hand-defined rules
for coding actions and actors. Despite using NLP meth-
ods (e.g., NER), they are rarely using advanced machine
learning algorithms. Among the few works using machine
learning we can cite the work of Beieler (2016), who uses
a character-based convolutional neural network, based on
the work of Zhang et al. (2015), to determine the type of
event action. However, the event actors are still determined
with Petrarch, and the training dataset is also labelled with
Petrarch.
Recently, categorizing news articles has also been exper-
imented by Adhikari et al. (Adhikari et al., 2019) using
BERT (introduced in Section 5.4.) to extract the topic of
the articles.

3. Event annotation at UCDP
The Uppsala Conflict Data Program is the oldest ongoing
data collection project for civil war, dating back almost 40
years. UCDP continuously updates its online database on
armed conflicts and organized violence, in which informa-
tion on several aspects of armed conflict such as conflict
dynamics and conflict resolution is available. The database
offers a web-based system for visualizing, handling and
downloading data, including ready-made datasets on orga-
nized violence and peacemaking, all free of charge. UCDP
is staffed by permanent full-time employees, handling data
collection and processing detailed in (Högblad, 2019), in-
cluding analysis and management.
The typical work-flow for a UCDP event annotator amounts
to the following. For retrieving the news data from their
data provider, an annotator:

5https://github.com/openeventdata/PLOVER

1. inputs search terms to search selected news sources,
then;

2. judges whether each news item retrieved:

(a) describes a conflict event relevant to UCDP, and

(b) either describes a new event, or brings new infor-
mation about a known event.

Once a news text passes the above criteria, i.e., it is in
fact relevant and contributes new information, the annotator
looks for the following information in it:

• Geography (country, region, and even finer grained ge-
ographical reference points).

• Participants in the dyad.

• The number of deaths reported.

• Date or time period of the event.

More often than not, multiple news items relating to the
same event are required in order to decide on all of the
aforementioned attributes for an event. UCDP staff pro-
cesses approximately 50 000 news items and other reports
yearly, depending on the conflict situation in the world. In
total, each text is manually annotated with up to 19 different
labels.
The textual data in the UDCP database is annotated at the
document level, rather than with in-text annotations at the
sentence level. For instance, a document annotated with in-
formation about the dyad being part of an event exhibits an
association between the dyad identifier and the document,
but it does not provide information as to where in the docu-
ment the reference to the dyad is located, and thus not how
the surface form of the reference is manifested. This is a
consequence of how the UCDP staff work when annotating
event data, and it renders it natural to cast the event anno-
tation problem as one of text categorization, rather than as
a sequence extraction and labelling task. The annotation
tasks consist in identifying the labels present in Table 1.

4. The dataset
The dataset at hand in this study consists of a combina-
tion of two distinct sources; the internal UCDP database
compiled while UCDP annotators are working with iden-
tifying events in news text and reports, and the externally
published Georeferenced Event Dataset (Sundberg and Me-
lander, 2013). The former contains textual information re-
lated to the source documents read by the annotator while
annotating the event, while the externally published event
data is a clean, quantitative view of the text data. The com-
bination of the data sources constitutes the ground truth,
that the machine learning experiments carried out in this
study will try to re-create.

4.1. The training set
The dataset used in the following experimental setup con-
sists of 31 772 UCDP events, each of which is associated
with a unique body of text in English. A body of text can
consist of a (mix of) notes made by the annotator, records

https://github.com/openeventdata/PLOVER
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Label Description Number of classes Class entropy
side a Name of state or government side involved. 299 3.9
side b Name of other participant. 301 3.5
dyad name Combination of side a and side b. 510 4.5
type of violence State-based, non-state, or one sided. 3 0.8
conflict name The name of the conflict. 428 4.3
where coordinates Name of place of conflict. 4 125 7.4
region Name of region. 5 1.4
country Name of country. 84 3.2
adm 1 More precise name of region. 672 5.3
adm 2 Even more precise name of region. 1 739 6.5
deaths a Number of deaths reported for side a. 75 1.4
deaths b Number of deaths reported for side b. 115 1.9
deaths civilians Number of deaths reported for civilians. 117 1.5
deaths unknown Number of deaths reported for unknown side. 104 0.9
low The lowest estimate of number of deaths reported for event. 175 3.2
best The best estimate of number of deaths reported for event. 187 3.2
high The highest estimate of number of deaths reported for event. 218 3.3

Table 1: The labels to be identified by tasks, along with their short descriptions, their number of classes, and their class
entropy for the dataset consisting of 31 772 events. The class entropy is a measure of the class imbalance for a task such
that a low value indicate higher imbalance. The class entropy is elaborated on in Section 4.2..

copied verbatim from an online conflict tracker, part or the
whole of one or several news items, or some other distinct
unit of text taken from an online resource. The dataset has
been pre-processed and chosen so as to make sure that each
text has given rise to a unique UCDP event. That is, in
the current dataset there is a one-to-one relation between a
body of text and an event. Thus, all texts that have resulted
in two or more UCDP events have been omitted. The ratio-
nale behind this decision is the following: if a machine can-
not reproduce the accuracy of the human annotators when
presented with an admittedly simplified scenario (i.e., ex-
pect no more than exactly one event per text), then it will
not perform well in a more realistic setting either (i.e., ex-
pect an arbitrary number of events to be described in each
text). Only if the results in the simpler scenario are satis-
factory should the more complicated setting be addressed.

4.2. The labels to predict
There are at least 17 different categorization tasks that a
UCDP annotator has to deal with for every single event
(omitting the temporal categories, i.e., the starting and end-
ing date of an event). The annotations of the event data
provided by UCDP constitutes the ground truth, and is as
such the target of the predictions in the experiments to fol-
low. In other words, for each of the bodies of texts in the
dataset, there are 17 labels to predict. Table 1 shows the
possible number of different classes that are in play in each
of the annotation tasks, as well as the normalized entropy
among those labels. The normalized class entropy value η
is defined as η(X) = −

∑n
i=1

p(xi) ln(p(xi))
ln(n) whereX is the

set of n possible classes, and p(xi) is the observed fraction
of values equal to the ith class. The entropy is indicative
of the distribution of classes within a task. A low entropy
value is a sign of a skewed distribution, e.g., one class is
significantly more frequent than the others, while a high
entropy implies a more even distribution of classes. Com-

bined, the size of the data, the number of classes and the
class entropy tells us something about the expected com-
plexity of the annotation task. For example, given the val-
ues in Table 1, it is expected that the task where coordinates
will be hard since it contains many classes (4 125) that are
relatively evenly distributed across the dataset (the entropy
value is high) giving, on average, relatively few events per
class (31 722/4 125) to learn from. On the other hand, the
task type of violence task exhibits a number of classes and
class entropy at the other end of the spectrum: it is com-
prised of few classes (3) that are unevenly distributed in
terms of occurrences in the dataset (entropy 0.8). Thus,
an annotator is expected to perform well for (the majority)
classes in the task.
Of course, there is more than meets the eye when it comes
to how well a classifier actually manages to perform than
just the number of classes, and their relative distribution,
but these numbers give a hint as to what to expect.

5. Experimental setup
The experiments carried out in this study involve learning
from the contents of the texts described in Section 4.1. to
predict the classes of each task described in Section 4.2..
There are 17 different tasks, each of which will be ad-
dressed using five different text categorization techniques,
as well as a random guessing-based baseline performance
estimation.
For each task, the baseline (Section 5.1.), Bag-of-Words
(BoW, Section 5.2.), ELMo experiments (Section 5.3.), the
two BERT versions (Section 5.4.) are based on 5-fold
cross-validation, with test data size set to 20% of the to-
tal corpus. This means that the baseline, BoW, ELMo, and
BERT results are supported by approximately 30 000 data
points each. Due to the time it took to complete the ULM-
FiT experiments (Section 5.5.), they are based on a sin-
gle training and testing set, where the testing set is made
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up of approximately 6 000 data points, instead of the 5-
fold cross-validation scheme employed in the other exper-
iments. The split into training and testing data used by
ULMFiT corresponds to the first fold in the baseline, BoW,
ELMo and BERT cases, as it is made with the same logic
and settings.

5.1. Baseline
A “dummy” classifier that guesses the class of a text by
randomly drawing a class label from the class label distri-
bution is used to assess a baseline upon which the machine
learning-based classifiers should improve. The dummy
classifier is available in scikit learn described by Pedregosa
et al. (2011).

5.2. Using a standard Bag-of-Words approach
A classical way to represent documents in text categoriza-
tion is as a collection of words, in which the order of the
words is assumed to be irrelevant. This type of representa-
tion is usually referred to as Bag-of-Words. The assumption
is naı̈ve, but historically, it has produced relatively compet-
itive results. The BoW representation used in the current
setup contains single words (unigrams), as well as all com-
binations of two consecutive words in the training corpus
(bigrams). A linear learning method (Logistic Regression)
is then used to train classifiers to distinguish between the
classes in the different tasks.
The BoW approach is included in the experiments since it,
in the past, has been a go-to solution in many text catego-
rization tasks and thus constitutes a sensible baseline that
more modern approaches should beat.

5.3. ELMo
Embeddings from Language Models (ELMo) described by
(Peters et al., 2018), is a deep character-based neural net-
work that learns embeddings by predicting the next token
given an input sequence. The network architecture includes
both convolutional and (bidirectional) LSTM layers, and
produces an embedding that that is sensitive to the partic-
ular context of the input sequence. Contextualized embed-
dings have proven to be highly beneficial when using the
embeddings as representation in downstream natural lan-
guage processing tasks such as categorization, entity recog-
nition, and question answering. In the current setup, an ex-
isting pretrained version6 of ELMo is used to produce a sin-
gle 1 024 elements long feature vector for the body of text
associated to each event in the UCDP data. The data used
for pretraining the ELMo model used here is reported to
be approximately 20 million randomly selected texts from
Wikipedia and CommonCrawl, amounting to a total train-
ing time of 3 days per language. The ELMo feature vec-
tors are then used as input to a non-linear learner (Random
Forest) to train a classifier for distinguishing between the
classes in each of the 17 tasks.
The ELMo approach is included in the experiments since it
has proven to be a simple and effective way of incorporating
language knowledge in machine learning situations where
training data is scarce.

6https://github.com/HIT-SCIR/
ELMoForManyLangs

5.4. BERT
Bidirectional Encoder Representations from Transformers
(BERT) (Devlin et al., 2019) is a deep, attention-based neu-
ral network architecture that produces a contextualized rep-
resentation of a text by taking both the left and right context
into account simultaneously. In this respect, it differs from
ELMo, which builds its representation of text based on a
concatenating representations from the left and right con-
text. Since its inception, BERT has been shown to improve
the state-of-the art on many language processing tasks, in-
cluding some text categorization ones.
In the experiments to follow, we use two versions of BERT:
the original large pre-trained uncased base model made
available via Hugging Face’s Transformers (Wolf et al.,
2019), and a version of the same model fine-tuned on the
UCDP data.

5.5. ULMFiT
Universal Language Modelling Fine-Tuning (ULMFiT),
described in (Howard and Ruder, 2018), is a three step
method for transferring general language use to specific
categorization tasks. The method consists of the following
three steps:

1. Train a language model on an unannotated corpus of
general language.

2. Fine-tune the language model based on unannotated
in-domain texts.

3. Train and fine-tune a text classifier on annotated texts.

An initial language model (Step 1) is readily available on-
line. ULMFiT is pretrained on a subset of the English
Wikipedia containing more than 103 million running words
taken from more than 28 000 verified Good or Featured ar-
ticles (Merity et al., 2016). In Step 2, we used the texts
associated with the 31 722 UCDP events to fine-tune the
language model. Finally, in Step 3, a classifier was created
for each of the 17 different tasks outlined in Table 1.
The implementation of ULMFiT used in the current exper-
iment is based on the AWD-LSTM language model archi-
tecture described by (Merity et al., 2017).
The ULMFiT approach is included in the experiments be-
cause it is a robust method for leveraging the language
knowledge of a pretrained model and its ability to ad-
just that model based on in-domain data, without requir-
ing vast computational resources. Until recently, ULMFiT
produced state-of-the art classifiers for a number of bench-
marks.

6. Categorization results
Table 2 on the next page shows the results from the ex-
periments in terms F1-score for the random baseline, the
BoW-based Logistic Regression classifier, the ELMo-based
Random Forest classifier, the original and fine-tuned BERT-
based Random Forest classifiers, as well as for ULMFiT.
As an example, refer back to the discussion of the com-
plexity of the annotation tasks in terms of the number of
classes and the class entropy in Section 4.2., and consider
the baseline F1-score result for the task type of violence

https://github.com/HIT-SCIR/ELMoForManyLangs
https://github.com/HIT-SCIR/ELMoForManyLangs
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Table 2: UCDP document categorization results.

Task Cls En B.F BW.F E.F BE.F BF.F U.F

side a 299 3.9 5.0 76.8 76.2 81.1 84.9 84.7

side b 301 3.5 8.1 73.7 75.5 78.3 82.0 82.5

dyad name 510 4.5 4.1 66.9 72.5 75.6 79.3 80.8

type of violence 3 0.8 56.6 88.8 85.8 88.6 89.6 91.8

conflict name 428 4.3 4.2 69.5 73.4 76.9 80.7 82.7

where coordinates 4125 7.4 0.3 30.3

region 5 1.4 28.7 99.4 89.6 97.7 98.7 99.8

country 84 3.2 6.9 95.5 82.8 90.2 94.7 97.4

adm 1 672 5.3 1.0 64.2 62.2 62.8 65.1 77.7

adm 2 1739 6.5 0.4 27.5 41.3

deaths a 75 1.4 46.8 63.6 83.1 82.2 82.2 73.3

deaths b 115 1.9 35.6 59.0 75.1 74.8 75.5 67.4

deaths civilians 117 1.5 48.7 63.8 84.1 83.5 83.7 70.9

deaths unknown 104 0.9 72.5 79.0 93.3 92.7 92.7 80.8

low 175 3.2 8.5 32.3 61.6 58.5 58.5 37.9

best 187 3.2 8.3 32.6 61.1 58.1 58.4 41.6

high 218 3.3 8.5 32.4 61.8 58.6 58.7 40.0

Task The name of the annotation task.
Cls The number of distinct classes for a particular task.
En The class entropy: a high value corresponds to a more evenly distribution of instances per class.
B Baseline, random guessing based on distribution of labels.
BW Bag of words representation.
E ELMo representations + non-linear classifier.
BE BERT representations + non-linear classifier.
BF BERT representations, model fine-tuned on UCDP data + non-linear classifier.
U ULMFiT pretrained on Wikipedia, fine-tuned and trained on UCDP data.
F weighted F1-score.

Light grey cells in the table indicate a failure of the classifier to complete the corresponding task.
The failures are due to the size of the models: for tasks with many classes, the memory consumption
of the learner exceeds that of the available memory (which in this case is 255Gb).

which is given in column B.F in Table 2. The task con-
cerns only three highly imbalanced classes, which in effect
means it is easy to get a fairly good score just by making
a vaguely informed guess with respect to the class. The
random guessing-based baseline F1-score is 56.6%. All
trained classifiers improve on the baseline, with ULMFiT
performing the best at an F1-score of 91.8%, a 35.2 percent
point improvement.
The other example in Section 4.2. is that of
where coordinates. The baseline results for the task align
with the expected outcome given the size of the data, the
number of classes, and the class entropy: the F1-score value
is low, at around 0.3% of a possible 100%. The ULM-
FiT classifier improves the F1-score given the baseline with
30.0%. Still, at an F1-score of 30.3%, the classifier clearly
underperforms vis-à-vis the human annotated data.
According to Table 2, the tasks that the hardest for the clas-
sifiers are:

• where coordinates (ULMFiT F1-score: 30.3%)

• adm 2 (ULMFiT F1-score: 41.3%)

• low (ELMo F1-score: 61.6%)

• best (ELMo F1-score: 61.1%)

• high (ELMo F1-score: 61.8%)

The above are all tasks in which there are many classes, and
thus little data to learn from per class. The following are the
tasks on which the classifiers performed the best:

• region (ULMFiT F1-score: 99.8%)

• country (ULMFiT F1-score: 97.4%)

• deaths unknown (ELMo F1-score: 93.3%)

• type of violence (ULMFiT F1-score: 91.8%)

• side a (BERT fine-tuned F1-score: 84.9%)

• deaths civilians (ELMo F1-score: 84.1%)

• deaths a (ELMo F1-score: 83.1%)

• conflict name (ULMFiT F1-score: 82.7%)

• side b (ULMFiT F1-score: 82.5%)

• dyad name (ULMFiT F1-score: 80.8%)

However, it should be emphasized that the experimental
setting in this report is a simplified one that only includes
data in which each textual body corresponds to exactly one
UCDP event.
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7. Discussion
From the results of this study, we make two observations.
The first observation concerns text categorization for event
annotation, while the other is about the developments in the
field of transfer learning in NLP.

7.1. Text categorization for event annotation
By casting the event annotation problem as one of text cate-
gorization, we have gained initial insight into the complex-
ity of assigning values to the individual attributes of events.
Some attributes are naturally harder to automatically pre-
dict than others: for instance, the finer-grained geograph-
ical location of an event (where coordinates) is harder to
assess than the immediately broader region (country). Sim-
ilarly, the dyad name is harder to predict than the names
of its participants. It is also clear that automated text cate-
gorization has value in that it performs very near the level
of human annotators, for some tasks. This begs the ques-
tion: How can we best make use of text categorization for
the purpose of improving the human annotation process in
terms of, e.g., speed, and consistency? We believe that the
categorization results reported in this study are encouraging
enough to warrant continued investigations with respect to
its use in the manual annotation process, as well as fur-
ther improvements of the categorization results. As for the
latter, there are two immediate issues that require attention.
The first issue is to go from the simplified setting of the cur-
rent experiments to one that allows the more natural many-
to-many relationship between texts and events. The second
issue is to investigate methods for making use of the condi-
tional dependencies between tasks e.g., that certain dyads
are active only in certain geographical locations.

7.2. Transfer learning in NLP
Although the bag-of-words approach is a strong baseline,
it is almost always better to utilize pre-training and fine-
tuning on domain-specific data. ELMo and the original
BERT model are both pre-trained on large amounts of data,
and do not make use of any in-domain data in the cur-
rent setting. Still, both models perform well, beating the
BoW baseline in most cases. Furthermore, fine-tuning pre-
trained models on domain-specific data always helps: the
fine-tuned BERT model beats the original model across all
tasks.
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