
Benchmarking of Transformer-Based Pre-Trained Models on Social
Media Text Classification Datasets

Yuting Guo*1, Xiangjue Dong*1, Mohammed Ali Al-Garadi2,
Abeed Sarker2, Cécile Paris3, Diego Mollá-Aliod4

1Department of Computer Science, Emory University, Atlanta, GA, USA
2Department of Biomedical Informatics, Emory University, Atlanta, GA, USA

3CSIRO Data61, Sydney, Australia
4Department of Computing, Macquarie University, Sydney, Australia

{yuting.guo, xiangjue.dong, m.a.al-garadi, abeed.sarker}@emory.edu
cecile.paris@data61.csiro.au, diego.molla-aliod@mq.edu.au

Abstract

Free text data from social media is now
widely used in natural language processing
research, and one of the most common ma-
chine learning tasks performed on this data
is classification. Generally speaking, per-
formances of supervised classification algo-
rithms on social media datasets are lower than
those on texts from other sources, but recently-
proposed transformer-based models have con-
siderably improved upon legacy state-of-the-
art systems. Currently, there is no study
that compares the performances of different
variants of transformer-based models on a
wide range of social media text classification
datasets. In this paper, we benchmark the
performances of transformer-based pre-trained
models on 25 social media text classifica-
tion datasets, 6 of which are health-related.
We compare three pre-trained language mod-
els, RoBERTa-base, BERTweet and Clinical-
BioBERT in terms of classification accuracy.
Our experiments show that RoBERTa-base
and BERTweet perform comparably on most
datasets, and considerably better than Clinical-
BioBERT, even on health-related datasets.

1 Introduction
Transformer-based pre-trained language models
have proven to be effective for many natural lan-
guage processing (NLP) tasks, such as text clas-
sification and question answering, and they have
enabled systems to outperform previous state-of-
the-art approaches. A prime example of such lan-
guage representation models is Bidirectional En-
coder Representations from Transformers (BERT),
which was pre-trained on the Book Corpus and En-
glish Wikipedia (Devlin et al., 2019). Since it was
proposed, many efforts have attempted to improve
upon it, and common strategies for doing so are to
use more data and train longer (Liu et al., 2019), or
to pre-train from scratch on domain-specific data

(Gu et al., 2020). Multiple variants of transformer-
based models have been proposed, but there is cur-
rently limited information available about how the
variants directly compare on a set of similar tasks.

In this paper, we focus on text from a specific
source, namely, social media, and the common
task of text classification. We compare the perfor-
mances of three pre-training methods. We chose
text classification as our target task because it is
perhaps the most common NLP-related machine
learning task, and most of the publicly-available an-
notated datasets were prepared for it. We included
25 social media classification datasets, 6 of which
are health-related. We compared three transformer-
based models—RoBERTa-base (Liu et al., 2019),
BERTweet (Nguyen et al., 2020a), and ClinicalBio-
BERT (Alsentzer et al., 2019). Our experiments
show that RoBERTa-base and BERTweet perform
comparably and are considerably better than Clin-
icalBioBERT. In addition to comparing the per-
formances of the models on all the datasets, we
analyzed the differences in performances between
domain-specific (medical), source-specific (social
media), and generic pre-trained models. Our empir-
ical analyses suggest that RoBERTa-base can cap-
ture general text characteristics, while BERTweet
can capture source-specific knowledge, and pre-
training on large-scale source-specific data can im-
prove the capabilities of models to capture general
text features, potentially benefiting downstream
source-specific tasks.

2 Related Work

The most relevant and recent related works are
those by Peng et al. (2019) and Gu et al. (2020).
Peng et al. (2019) proposed the Biomedical Lan-
guage Understanding Evaluation (BLUE) bench-
mark for the biomedical domain. The evaluations
include five tasks with ten datasets covering both
biomedical and clinical texts. The specific tasks in-



clude named entity recognition, text classification
and relation extraction. Gu et al. (2020) proposed
the Biomedical Language Understanding and Rea-
soning Benchmark (BLURB) for PubMed-based
biomedical NLP applications, with 13 biomedical
NLP datasets in six tasks. To the best of our knowl-
edge, there is no existing work that attempts to per-
form similar benchmarking for transformer-based
approaches on social media data, and the results
reported in this paper follow on the footsteps of the
benchmarks referenced above.

Recent attempts at adaptation of transformer-
based models are also relevant to our current work,
since we wanted to include a domain-adapted
and a source-adapted model in our comparisons.
Many domain adaptation efforts have been re-
ported in the literature. BioBERT—generated by
pre-training BERT on biomedical corpora (e.g.,
PubMed abstracts)—was demonstrated to outper-
form BERT on three representative biomedical text
mining tasks (Lee et al., 2019). Alsentzer et al.
(2019) attempted to further adapt pre-trained mod-
els for clinical text by training BioBERT on clini-
cal notes, resulting in the ClinicalBioBERT model.
We included ClinicalBioBERT as an example of a
domain-adapted pre-trained model in our compar-
isons. For source-adaptation (social media text),
Nguyen et al. (2020a) proposed BERTweet by pre-
training BERT on a large set of English tweets.
We include BERTweet in our comparisons as an
example of a source-adapted model.

3 Methods

3.1 Model Architecture

We focus solely on benchmarking systems for so-
cial media text classification datasets in this paper.
The overall framework of our classification model
is shown in Figure 1. It consists of an encoder, a
pooling layer, a linear layer, and an output layer
with Softmax activation. The encoder converts
each token in a document into a embedding ma-
trix, and the pooling layer generates a document
embedding ed by averaging the word embeddings.1

The document embedding is then fed into the linear
layer and the output layer. The output is a prob-
ability value between 0 and 1, which is used to
compute a logistic loss during the training phase,
and the class with the highest probability is cho-
sen in the inference phase. We use the encoders

1We also experimented with [CLS] embeddings, but did not
observe significant performance differences (Appendix A.2).

from recent pre-trained deep language models that
are trained on different corpora and pre-training
tasks to convert documents into embeddings, as
described in Section 3.2.
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Figure 1: The overall framework of our model.

3.2 Document Encoder

RoBERTa: A BERT variant named RoBERTa was
released by Liu et al. (2019) with the same model
architecture of BERT but with improved perfor-
mance, achieved by training the model longer with
a larger batch size, on more data, removing the
next sentence prediction objective during the pre-
training procedure, and applying a dynamic mask-
ing technique. We chose RoBERTa-base as the
generic or domain-independent encoder in this pa-
per since it outperforms BERT-base and matches
the state-of-the-art results of another BERT variant
XLNet (Yang et al., 2019) on some NLP tasks.

BERTweet: Nguyen et al. (2020a) developed
BERTweet, a pre-trained deep language model with
the same model architecture as BERT-base, but us-
ing the RoBERTa pre-training procedure on a large
scale set of English tweets. Because tweets gener-
ally use informal grammar and irregular vocabulary,
which are different from traditional text data such
as news articles and Wikipedia, BERTweet was an
attempt at source adaptation of pre-trained models.
BERTweet has been shown to obtain better results
than RoBERTa-base on three Tweet NLP tasks—
POS tagging, named entity recognition and text
classification, illustrating its higher capability of
capturing language features of English Tweets com-
pared to RoBERTa-base (Nguyen et al., 2020a).

ClinicalBioBERT: ClinicalBioBERT (Alsentzer
et al., 2019), is built by further training of BioBERT
(Lee et al., 2019) on clinical notes, and it has been
shown to significantly outperform BERT-base on
three clinical NLP tasks. This model can generate
contextual word embeddings, which are expected
to capture clinical knowledge and can benefit the
clinical NLP tasks such as natural language infer-
ence and entity recognition in the medical domain.



3.3 Data

We included 25 datasets in our experiments, com-
prising 6 datasets that were created for health-
related tasks such as prescription medication abuse
and adverse drug reaction detection, and 19 that
were created for non-health-related tasks such as
sentiment analysis and offensive language detec-
tion. The detailed data descriptions are listed in the
Appendix A.1, and the statistics of all datasets are
described in Table 1. For data preprocessing, we
followed the procedure implemented by the open
source tool preprocess-twitter,2 which includes the
steps of lowercasing, and normalizing numbers,
hashtags, links, capital words and repeated letters.

Dataset TRN TST L S

H
ea

lth

ADR Detection 4318 1152 2 T
BreastCancer 3513 1204 2 T
PM Abuse 11829 3271 4 T
SMM4H-17-task1 5340 6265 2 T
SMM4H-17-task2 7291 5929 3 T
WNUT-20-task2 6238 1000 2 T

N
on

-H
ea

lth

OLID-1 11916 860 2 T
OLID-2 11916 240 2 T
OLID-3 11916 213 3 T
TRAC-1-1 11999 916 3 F
TRAC-1-2 11999 1257 3 T
TRAC-2-1 4263 1200 3 Y
TRAC-2-2 4263 1200 2 Y
Sarcasm-1 3960 1800 2 R
Sarcasm-2 4500 1800 2 T
CrowdFlower 28707 8101 13 T
FB-arousal-1 2085 580 9 F
FB-arousal-2 2088 590 9 F
FB-valence-1 2064 595 8 F
FB-valence-2 2066 604 9 F
SemEval-18-A 1701 1002 4 T
SemEval-18-F 2252 986 4 T
SemEval-18-J 1616 1105 4 T
SemEval-18-S 1533 975 4 T
SemEval-18-V 1182 938 8 T

Table 1: The statistics of the training (TRN) and test
(TST) set. L: #classes; S: data sources; T: Twitter; R:
Reddit; F: Facebook; Y: YouTube.

3.4 Experimental Setup

Following a modified setting from Liu et al. (2019),
we performed a limited parameter search with
learning rate ∈ {2e − 5, 3e − 5}. We fine-tuned
each model for 10 epochs and selected the model
that achieves the best metric on the validation set.
Each experiment was run three times with different
initializations, and the median results of the valida-
tion and test sets for each dataset are reported. The

2https://nlp.stanford.edu/projects/glove/
preprocess-twitter.rb

rest of hyper-parameters were empirically chosen
and are shown in Table 2.

Hyper-parameter Hyper-parameter
Max sequence size 128 Warmup ratio 0
Batch size 32 Adam epsilon 1e-8

Table 2: Hyper-parameter configurations of all models.

4 Results and Discussion
Table 3 lists the accuracies of all the models on the
test sets of the included datasets. In order to com-
pare the statistical significance of differences be-
tween the accuracies, we used the McNemar’s test
to compare the top-2 best models for each dataset.
The difference between two models is regarded as
statistically significant if the p-value <0.05.

Dataset RB BT CL p-value
ADR Detection 91.4 92.7 90.4 0.11
BreastCancer 93.9 93.6 91.2 0.90
PM Abuse 81.4 82.4 77.4 0.09
SMM4H-17-task1 93.6 93.5 92.7 0.76
SMM4H-17-task2 78.4 79.7 75.0 0.01
WNUT-20-task2 89.1 88.3 86.5 0.48
OLID-1 85.1 85.2 83.5 0.90
OLID-2 89.4 90.0 89.0 0.73
OLID-3 69.5 70.0 66.4 0.73
TRAC-1-1 58.6 59.2 55.4 0.76
TRAC-1-2 58.8 65.8 58.0 0.00
TRAC-2-1 72.8 73.3 63.9 1.00
TRAC-2-2 85.8 85.5 87.2 0.10
sarcasm-1 67.3 69.5 64.6 0.06
sarcasm-2 73.2 76.1 68.2 0.02
CrowdFlower 39.9 41.3 38.8 0.00
fb-arousal-1 46.6 45.3 46.8 1.00
fb-arousal-2 54.9 54.8 54.1 0.92
fb-valence-1 60.2 64.4 54.5 0.06
fb-valence-2 52.8 52.6 45.9 1.00
SemEval-18-A 52.3 54.6 46.0 0.16
SemEval-18-F 69.3 67.4 65.3 0.09
SemEval-18-J 47.7 51.5 45.3 0.01
SemEval-18-S 54.9 53.9 48.4 0.42
SemEval-18-V 45.5 46.6 36.2 0.56

Table 3: The accuracies of the three transformer-based
models on the test splits of our included datasets.
RB: RoBERTa; BT: BERTweet; CL: ClinicalBioBERT;
p-value: McNemar’s test p-value. The best result of
each dataset and the p-values <0.05 are in boldface.

BERTweet achieves the highest accuracies on 16
out of 25 datasets, including health and non-health-
related datasets from Twitter, Facebook, Reddit,
and YouTube. The fact that BERTweet performs
well on non-tweet datasets suggests that BERTweet
can learn some universal characteristics of so-
cial media languages by pre-training on tweets.3

On 5 datasets (specifically, SMM4H-17-task2,
3Dai et al. (2020) reported a similar finding: a model pre-
trained on business reviews (Forum BERT) outperformed one

https://nlp.stanford.edu/projects/glove/preprocess-twitter.rb
https://nlp.stanford.edu/projects/glove/preprocess-twitter.rb
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Figure 2: The 95% confidence intervals of three models on our included datasets.

TRAC-1-2, sarcasm-2, CrowdFlower, and
SemEval-18-J), the best-performing system ob-
tained significantly better results than the next best
system, and in all these cases, BERTweet was the
winner. There are, however, no significant differ-
ences between RoBERTa-base and BERTweet on
most datasets, which shows that RoBERTa-base
can capture general text features and work well
on social media tasks. The differences in the pre-
training dataset sizes for RoBERTa-base (160 GB)
and BERTweet (80 GB) suggest that pre-training
on relatively small source-specific data may effec-
tively benefit the downstream source-specific tasks.

Figure 2 visually illustrates the distribution of
the accuracy scores and their 95% confidence inter-
vals for all three models on our included datasets.
From the figure, the relative underperformance of
the ClinicalBioBERT is evident. ClinicalBioBERT
does not appear to capture social media-specific
characteristics of the data even for health-related
classification datasets, although it is trained on
clinical notes. This finding suggests that for so-
cial media-specific health-related research tasks,
it might be better to choose a source-specific pre-
trained model (e.g., BERTweet for social media)
rather than a domain-specific one. It is possible
that the gap between the language of clinical notes
and social media text is large enough to negatively
impact the social media text representation capabil-
ity of the encoder. Moreover, ClinicalBioBERT is

pre-trained on tweets (Twitter BERT) on 3 tweet classification
tasks.

trained by continuing the training of BioBERT on a
small size of clinical data (about 2 million records),
which may have led to the insufficient learning
of clinical knowledge. The under-performance of
ClinicalBioBERT does not necessarily mean that
domain-specialized transformer models are inferior.
Our experimental results also suggest that large pre-
training data can boost the generalizability of mod-
els, while pre-training on small in-domain data may
not benefit target tasks within the domain. Based
on our findings, for social media text classification
datasets, we recommend the use of RoBERTa-base,
BERTweet or models pre-trained in similar fashion,
and we do not recommend the use of ClinicalBio-
BERT, even for health-related social media tasks.
A major limitation of our current work is that we
only evaluated three pre-trained models, and, in
the future, we will incorporate other similar mod-
els such as Twitter BERT (Dai et al., 2020) and
BioBERT (Lee et al., 2019). We will also evalu-
ate models using more metrics, as accuracy can be
particularly misleading for imbalanced datasets.

5 Conclusion

We benchmarked the performances of three
transformer-based pre-trained models on 25 so-
cial media text classification datasets. We found
that RoBERTa-base and BERTweet perform sim-
ilarly on most datasets, consistently outperform-
ing ClinicalBioBERT, even for health-related tasks.
Our experiments suggest that for social media-
based classification tasks, it might be best to use



pre-trained models generated from large social me-
dia text. It might be possible to further improve the
performance of BERTweet by incorporating data
from multiple social networks.
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Dataset Description Source
ADR Detection Detect adverse reaction (ADR) mentioned from text Sarker and Gonzalez (2015)
BreastCancer Detect breast cancer patients based on their self-reports Sarker et al. (2020)
PM Abuse Identify prescription medication (PM) abuse on tweets Ali Al-Garadi et al. (2020)4

SMM4H-17-task1 Detect adverse reaction (ADR) mentioned from text Sarker et al. (2018)SMM4H-17-task2 Identify medication consumption from medication-mentioning tweets
WNUT-20-task2 Identify informative COVID-19 related tweets Nguyen et al. (2020b)
OLID-1

Identify offensive language from tweets Zampieri et al. (2019)OLID-2
OLID-3
TRAC-1-1 Detect aggressive information in social media Kumar et al. (2018)TRAC-1-2
TRAC-2-1 Detect aggressive language on social media text Bhattacharya et al. (2020)TRAC-2-2
sarcasm-1 Binary emotion classification of sarcasm Ghosh et al. (2020)sarcasm-2
CrowdFlower Multiclass emotion classification Web5

fb-arousal-1 Classify the level of arousal
Preoţiuc-Pietro et al. (2016)fb-arousal-2

fb-valence-1 Classify the level of valencefb-valence-2
SemEval-18-A Emotion intensity ordinal classification of anger

Mohammad et al. (2018)
SemEval-18-F Emotion intensity ordinal classification of fear
SemEval-18-J Emotion intensity ordinal classification of joy
SemEval-18-S Emotion intensity ordinal classification sadness
SemEval-18-V Valence ordinal classification

Table A.1: Data descriptions.

Data and Systems for Medication-Related Text
Classification and Concept Normalization from
Twitter: Insights from the Social Media Mining
for Health (SMM4H)-2017 Shared Task. Journal
of the American Medical Informatics Association,
25(10):1274–1283.

Abeed Sarker and Graciela Gonzalez. 2015. Portable
Automatic Text Classification for Adverse Drug Re-
action Detection via Multi-Corpus Training. J. of
Biomedical Informatics, 53(C):196–207.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le.
2019. XLNet: Generalized Autoregressive Pre-
training for Language Understanding. In H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. dAlché-Buc,
E. Fox, and R. Garnett, editors, Advances in Neu-
ral Information Processing Systems 32, pages 5753–
5763. Curran Associates, Inc.

Marcos Zampieri, Shervin Malmasi, Preslav Nakov,
Sara Rosenthal, Noura Farra, and Ritesh Kumar.
2019. Predicting the Type and Target of Offensive
Posts in Social Media. In Proceedings of NAACL.

A Appendix
A.1 Data Descriptions

Table A.1 provides a short description about the
classification task focuses. The datasets that do not
provide a split of train/dev/test sets are split into a
training set and a test set using a 80/20 rate. For
WNUT-20-task2, the results on the validation set
was reported because the test set was not released.

A.2 Pooling Strategy Comparison

Table A.2 shows the results of taking [CLS] em-
beddings as document embeddings.

Dataset RB BT CL
C M C M C M

ADR Detection 91.7 91.4 90.4 92.7 90.8 90.4
BreastCancer 94.1 93.9 93.4 93.6 90.8 91.2
PM Abuse 81.1 81.4 81.9 82.4 77.4 77.4
SMM4H-17-task1 93.6 93.6 93.2 93.5 92.3 92.7
SMM4H-17-task2 78.9 78.4 79.1 79.7 74.3 75.0
WNUT-20-task2 89.7 89.1 88.3 88.3 85.8 86.5
OLID-1 85.5 85.1 84.7 85.2 83.4 83.5
OLID-2 89.2 89.4 90.6 90.0 89.2 89.0
OLID-3 68.5 69.5 71.4 70.0 67.8 66.4
TRAC-1-1 57.5 58.6 59.2 59.2 52.2 55.4
TRAC-1-2 58.6 58.8 65.8 65.8 57.4 58.0
TRAC2-1 75.1 72.8 63.3 73.3 66.3 63.9
TRAC2-2 85.4 85.8 83.9 85.5 87.6 87.3
CrowdFlower 39.8 39.9 35.0 41.3 38.8 38.8
fb-arousal-1 45.8 46.6 45.6 45.3 45.7 46.8
fb-arousal-2 54.6 54.9 52.9 54.8 52.4 54.1
fb-valence-1 59.5 60.2 60.5 64.4 52.9 54.5
fb-valence-2 53.6 52.8 52.6 52.6 44.9 45.9
sarcasm-1 66.3 67.3 71.4 69.5 64.8 64.6
sarcasm-2 73.2 73.3 76.2 76.1 68.0 68.2
SemEval-18-task-A 55.4 52.3 60.8 54.6 48.9 46.0
SemEval-18-task-F 49.4 47.7 43.4 51.5 45.1 45.3
SemEval-18-task-J 53.7 54.9 53.9 53.9 49.7 48.4
SemEval-18-task-S 68.2 69.3 64.2 67.4 65.9 65.3
SemEval-18-task-V 45.7 45.5 38.3 46.6 36.4 36.2

Table A.2: The accuracies of taking different pool-
ing strategies on the test sets. C: [CLS] emebddings;
M: mean word embeddings. The best results on each
dataset are in boldface.

5https://projectreporter.nih.gov/project_
info_description.cfm?aid=9577760

5https://data.world/crowdflower/
sentiment-analysis-in-text
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