@inproceedings{kitayama-etal-2020-popularity,
title = "Popularity Prediction of Online Petitions using a Multimodal {D}eep{R}egression Model",
author = "Kitayama, Kotaro and
Subramanian, Shivashankar and
Baldwin, Timothy",
editor = "Kim, Maria and
Beck, Daniel and
Mistica, Meladel",
booktitle = "Proceedings of the 18th Annual Workshop of the Australasian Language Technology Association",
month = dec,
year = "2020",
address = "Virtual Workshop",
publisher = "Australasian Language Technology Association",
url = "https://aclanthology.org/2020.alta-1.14",
pages = "110--114",
abstract = "Online petitions offer a mechanism for peopleto initiate a request for change and gather sup-port from others to demonstrate support for thecause. In this work, we model the task of peti-tion popularity using both text and image rep-resentations across four different languages,and including petition metadata. We evaluateour proposed approach using a dataset of 75kpetitions from Avaaz.org, and find strong com-plementarity between text and images.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kitayama-etal-2020-popularity">
<titleInfo>
<title>Popularity Prediction of Online Petitions using a Multimodal DeepRegression Model</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kotaro</namePart>
<namePart type="family">Kitayama</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Shivashankar</namePart>
<namePart type="family">Subramanian</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Timothy</namePart>
<namePart type="family">Baldwin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th Annual Workshop of the Australasian Language Technology Association</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Beck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meladel</namePart>
<namePart type="family">Mistica</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Australasian Language Technology Association</publisher>
<place>
<placeTerm type="text">Virtual Workshop</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Online petitions offer a mechanism for peopleto initiate a request for change and gather sup-port from others to demonstrate support for thecause. In this work, we model the task of peti-tion popularity using both text and image rep-resentations across four different languages,and including petition metadata. We evaluateour proposed approach using a dataset of 75kpetitions from Avaaz.org, and find strong com-plementarity between text and images.</abstract>
<identifier type="citekey">kitayama-etal-2020-popularity</identifier>
<location>
<url>https://aclanthology.org/2020.alta-1.14</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>110</start>
<end>114</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Popularity Prediction of Online Petitions using a Multimodal DeepRegression Model
%A Kitayama, Kotaro
%A Subramanian, Shivashankar
%A Baldwin, Timothy
%Y Kim, Maria
%Y Beck, Daniel
%Y Mistica, Meladel
%S Proceedings of the 18th Annual Workshop of the Australasian Language Technology Association
%D 2020
%8 December
%I Australasian Language Technology Association
%C Virtual Workshop
%F kitayama-etal-2020-popularity
%X Online petitions offer a mechanism for peopleto initiate a request for change and gather sup-port from others to demonstrate support for thecause. In this work, we model the task of peti-tion popularity using both text and image rep-resentations across four different languages,and including petition metadata. We evaluateour proposed approach using a dataset of 75kpetitions from Avaaz.org, and find strong com-plementarity between text and images.
%U https://aclanthology.org/2020.alta-1.14
%P 110-114
Markdown (Informal)
[Popularity Prediction of Online Petitions using a Multimodal DeepRegression Model](https://aclanthology.org/2020.alta-1.14) (Kitayama et al., ALTA 2020)
ACL