@inproceedings{ferraro-suominen-2020-transformer,
title = "Transformer Semantic Parsing",
author = "Ferraro, Gabriela and
Suominen, Hanna",
editor = "Kim, Maria and
Beck, Daniel and
Mistica, Meladel",
booktitle = "Proceedings of the 18th Annual Workshop of the Australasian Language Technology Association",
month = dec,
year = "2020",
address = "Virtual Workshop",
publisher = "Australasian Language Technology Association",
url = "https://aclanthology.org/2020.alta-1.16",
pages = "121--126",
abstract = "In neural semantic parsing, sentences are mapped to meaning representations using encoder-decoder frameworks. In this paper, we propose to apply the Transformer architecture, instead of recurrent neural networks, to this task. Experiments in two data sets from different domains and with different levels of difficulty show that our model achieved better results than strong baselines in certain settings and competitive results across all our experiments.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ferraro-suominen-2020-transformer">
<titleInfo>
<title>Transformer Semantic Parsing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Gabriela</namePart>
<namePart type="family">Ferraro</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hanna</namePart>
<namePart type="family">Suominen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 18th Annual Workshop of the Australasian Language Technology Association</title>
</titleInfo>
<name type="personal">
<namePart type="given">Maria</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Daniel</namePart>
<namePart type="family">Beck</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Meladel</namePart>
<namePart type="family">Mistica</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Australasian Language Technology Association</publisher>
<place>
<placeTerm type="text">Virtual Workshop</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In neural semantic parsing, sentences are mapped to meaning representations using encoder-decoder frameworks. In this paper, we propose to apply the Transformer architecture, instead of recurrent neural networks, to this task. Experiments in two data sets from different domains and with different levels of difficulty show that our model achieved better results than strong baselines in certain settings and competitive results across all our experiments.</abstract>
<identifier type="citekey">ferraro-suominen-2020-transformer</identifier>
<location>
<url>https://aclanthology.org/2020.alta-1.16</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>121</start>
<end>126</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Transformer Semantic Parsing
%A Ferraro, Gabriela
%A Suominen, Hanna
%Y Kim, Maria
%Y Beck, Daniel
%Y Mistica, Meladel
%S Proceedings of the 18th Annual Workshop of the Australasian Language Technology Association
%D 2020
%8 December
%I Australasian Language Technology Association
%C Virtual Workshop
%F ferraro-suominen-2020-transformer
%X In neural semantic parsing, sentences are mapped to meaning representations using encoder-decoder frameworks. In this paper, we propose to apply the Transformer architecture, instead of recurrent neural networks, to this task. Experiments in two data sets from different domains and with different levels of difficulty show that our model achieved better results than strong baselines in certain settings and competitive results across all our experiments.
%U https://aclanthology.org/2020.alta-1.16
%P 121-126
Markdown (Informal)
[Transformer Semantic Parsing](https://aclanthology.org/2020.alta-1.16) (Ferraro & Suominen, ALTA 2020)
ACL
- Gabriela Ferraro and Hanna Suominen. 2020. Transformer Semantic Parsing. In Proceedings of the 18th Annual Workshop of the Australasian Language Technology Association, pages 121–126, Virtual Workshop. Australasian Language Technology Association.