@inproceedings{safi-samghabadi-etal-2020-attending,
title = "Attending the Emotions to Detect Online Abusive Language",
author = "Safi Samghabadi, Niloofar and
Hatami, Afsheen and
Shafaei, Mahsa and
Kar, Sudipta and
Solorio, Thamar",
editor = "Akiwowo, Seyi and
Vidgen, Bertie and
Prabhakaran, Vinodkumar and
Waseem, Zeerak",
booktitle = "Proceedings of the Fourth Workshop on Online Abuse and Harms",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.alw-1.10",
doi = "10.18653/v1/2020.alw-1.10",
pages = "79--88",
abstract = "In recent years, abusive behavior has become a serious issue in online social networks. In this paper, we present a new corpus for the task of abusive language detection that is collected from a semi-anonymous online platform, and unlike the majority of other available resources, is not created based on a specific list of bad words. We also develop computational models to incorporate emotions into textual cues to improve aggression identification. We evaluate our proposed methods on a set of corpora related to the task and show promising results with respect to abusive language detection.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="safi-samghabadi-etal-2020-attending">
<titleInfo>
<title>Attending the Emotions to Detect Online Abusive Language</title>
</titleInfo>
<name type="personal">
<namePart type="given">Niloofar</namePart>
<namePart type="family">Safi Samghabadi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Afsheen</namePart>
<namePart type="family">Hatami</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Mahsa</namePart>
<namePart type="family">Shafaei</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sudipta</namePart>
<namePart type="family">Kar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Thamar</namePart>
<namePart type="family">Solorio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Workshop on Online Abuse and Harms</title>
</titleInfo>
<name type="personal">
<namePart type="given">Seyi</namePart>
<namePart type="family">Akiwowo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bertie</namePart>
<namePart type="family">Vidgen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vinodkumar</namePart>
<namePart type="family">Prabhakaran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zeerak</namePart>
<namePart type="family">Waseem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In recent years, abusive behavior has become a serious issue in online social networks. In this paper, we present a new corpus for the task of abusive language detection that is collected from a semi-anonymous online platform, and unlike the majority of other available resources, is not created based on a specific list of bad words. We also develop computational models to incorporate emotions into textual cues to improve aggression identification. We evaluate our proposed methods on a set of corpora related to the task and show promising results with respect to abusive language detection.</abstract>
<identifier type="citekey">safi-samghabadi-etal-2020-attending</identifier>
<identifier type="doi">10.18653/v1/2020.alw-1.10</identifier>
<location>
<url>https://aclanthology.org/2020.alw-1.10</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>79</start>
<end>88</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Attending the Emotions to Detect Online Abusive Language
%A Safi Samghabadi, Niloofar
%A Hatami, Afsheen
%A Shafaei, Mahsa
%A Kar, Sudipta
%A Solorio, Thamar
%Y Akiwowo, Seyi
%Y Vidgen, Bertie
%Y Prabhakaran, Vinodkumar
%Y Waseem, Zeerak
%S Proceedings of the Fourth Workshop on Online Abuse and Harms
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F safi-samghabadi-etal-2020-attending
%X In recent years, abusive behavior has become a serious issue in online social networks. In this paper, we present a new corpus for the task of abusive language detection that is collected from a semi-anonymous online platform, and unlike the majority of other available resources, is not created based on a specific list of bad words. We also develop computational models to incorporate emotions into textual cues to improve aggression identification. We evaluate our proposed methods on a set of corpora related to the task and show promising results with respect to abusive language detection.
%R 10.18653/v1/2020.alw-1.10
%U https://aclanthology.org/2020.alw-1.10
%U https://doi.org/10.18653/v1/2020.alw-1.10
%P 79-88
Markdown (Informal)
[Attending the Emotions to Detect Online Abusive Language](https://aclanthology.org/2020.alw-1.10) (Safi Samghabadi et al., ALW 2020)
ACL
- Niloofar Safi Samghabadi, Afsheen Hatami, Mahsa Shafaei, Sudipta Kar, and Thamar Solorio. 2020. Attending the Emotions to Detect Online Abusive Language. In Proceedings of the Fourth Workshop on Online Abuse and Harms, pages 79–88, Online. Association for Computational Linguistics.