@inproceedings{narang-brew-2020-abusive,
title = "Abusive Language Detection using Syntactic Dependency Graphs",
author = "Narang, Kanika and
Brew, Chris",
editor = "Akiwowo, Seyi and
Vidgen, Bertie and
Prabhakaran, Vinodkumar and
Waseem, Zeerak",
booktitle = "Proceedings of the Fourth Workshop on Online Abuse and Harms",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.alw-1.6",
doi = "10.18653/v1/2020.alw-1.6",
pages = "44--53",
abstract = "Automated detection of abusive language online has become imperative. Current sequential models (LSTM) do not work well for long and complex sentences while bi-transformer models (BERT) are not computationally efficient for the task. We show that classifiers based on syntactic structure of the text, dependency graphical convolutional networks (DepGCNs) can achieve state-of-the-art performance on abusive language datasets. The overall performance is at par with of strong baselines such as fine-tuned BERT. Further, our GCN-based approach is much more efficient than BERT at inference time making it suitable for real-time detection.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="narang-brew-2020-abusive">
<titleInfo>
<title>Abusive Language Detection using Syntactic Dependency Graphs</title>
</titleInfo>
<name type="personal">
<namePart type="given">Kanika</namePart>
<namePart type="family">Narang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chris</namePart>
<namePart type="family">Brew</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fourth Workshop on Online Abuse and Harms</title>
</titleInfo>
<name type="personal">
<namePart type="given">Seyi</namePart>
<namePart type="family">Akiwowo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bertie</namePart>
<namePart type="family">Vidgen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Vinodkumar</namePart>
<namePart type="family">Prabhakaran</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Zeerak</namePart>
<namePart type="family">Waseem</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Automated detection of abusive language online has become imperative. Current sequential models (LSTM) do not work well for long and complex sentences while bi-transformer models (BERT) are not computationally efficient for the task. We show that classifiers based on syntactic structure of the text, dependency graphical convolutional networks (DepGCNs) can achieve state-of-the-art performance on abusive language datasets. The overall performance is at par with of strong baselines such as fine-tuned BERT. Further, our GCN-based approach is much more efficient than BERT at inference time making it suitable for real-time detection.</abstract>
<identifier type="citekey">narang-brew-2020-abusive</identifier>
<identifier type="doi">10.18653/v1/2020.alw-1.6</identifier>
<location>
<url>https://aclanthology.org/2020.alw-1.6</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>44</start>
<end>53</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Abusive Language Detection using Syntactic Dependency Graphs
%A Narang, Kanika
%A Brew, Chris
%Y Akiwowo, Seyi
%Y Vidgen, Bertie
%Y Prabhakaran, Vinodkumar
%Y Waseem, Zeerak
%S Proceedings of the Fourth Workshop on Online Abuse and Harms
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F narang-brew-2020-abusive
%X Automated detection of abusive language online has become imperative. Current sequential models (LSTM) do not work well for long and complex sentences while bi-transformer models (BERT) are not computationally efficient for the task. We show that classifiers based on syntactic structure of the text, dependency graphical convolutional networks (DepGCNs) can achieve state-of-the-art performance on abusive language datasets. The overall performance is at par with of strong baselines such as fine-tuned BERT. Further, our GCN-based approach is much more efficient than BERT at inference time making it suitable for real-time detection.
%R 10.18653/v1/2020.alw-1.6
%U https://aclanthology.org/2020.alw-1.6
%U https://doi.org/10.18653/v1/2020.alw-1.6
%P 44-53
Markdown (Informal)
[Abusive Language Detection using Syntactic Dependency Graphs](https://aclanthology.org/2020.alw-1.6) (Narang & Brew, ALW 2020)
ACL