@inproceedings{ng-etal-2020-creating,
title = "Creating a Domain-diverse Corpus for Theory-based Argument Quality Assessment",
author = "Ng, Lily and
Lauscher, Anne and
Tetreault, Joel and
Napoles, Courtney",
editor = "Cabrio, Elena and
Villata, Serena",
booktitle = "Proceedings of the 7th Workshop on Argument Mining",
month = dec,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.argmining-1.13",
pages = "117--126",
abstract = "Computational models of argument quality (AQ) have focused primarily on assessing the overall quality or just one specific characteristic of an argument, such as its convincingness or its clarity. However, previous work has claimed that assessment based on theoretical dimensions of argumentation could benefit writers, but developing such models has been limited by the lack of annotated data. In this work, we describe GAQCorpus, the first large, domain-diverse annotated corpus of theory-based AQ. We discuss how we designed the annotation task to reliably collect a large number of judgments with crowdsourcing, formulating theory-based guidelines that helped make subjective judgments of AQ more objective. We demonstrate how to identify arguments and adapt the annotation task for three diverse domains. Our work will inform research on theory-based argumentation annotation and enable the creation of more diverse corpora to support computational AQ assessment.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="ng-etal-2020-creating">
<titleInfo>
<title>Creating a Domain-diverse Corpus for Theory-based Argument Quality Assessment</title>
</titleInfo>
<name type="personal">
<namePart type="given">Lily</namePart>
<namePart type="family">Ng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anne</namePart>
<namePart type="family">Lauscher</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Joel</namePart>
<namePart type="family">Tetreault</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Courtney</namePart>
<namePart type="family">Napoles</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 7th Workshop on Argument Mining</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Cabrio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Serena</namePart>
<namePart type="family">Villata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Computational models of argument quality (AQ) have focused primarily on assessing the overall quality or just one specific characteristic of an argument, such as its convincingness or its clarity. However, previous work has claimed that assessment based on theoretical dimensions of argumentation could benefit writers, but developing such models has been limited by the lack of annotated data. In this work, we describe GAQCorpus, the first large, domain-diverse annotated corpus of theory-based AQ. We discuss how we designed the annotation task to reliably collect a large number of judgments with crowdsourcing, formulating theory-based guidelines that helped make subjective judgments of AQ more objective. We demonstrate how to identify arguments and adapt the annotation task for three diverse domains. Our work will inform research on theory-based argumentation annotation and enable the creation of more diverse corpora to support computational AQ assessment.</abstract>
<identifier type="citekey">ng-etal-2020-creating</identifier>
<location>
<url>https://aclanthology.org/2020.argmining-1.13</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>117</start>
<end>126</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Creating a Domain-diverse Corpus for Theory-based Argument Quality Assessment
%A Ng, Lily
%A Lauscher, Anne
%A Tetreault, Joel
%A Napoles, Courtney
%Y Cabrio, Elena
%Y Villata, Serena
%S Proceedings of the 7th Workshop on Argument Mining
%D 2020
%8 December
%I Association for Computational Linguistics
%C Online
%F ng-etal-2020-creating
%X Computational models of argument quality (AQ) have focused primarily on assessing the overall quality or just one specific characteristic of an argument, such as its convincingness or its clarity. However, previous work has claimed that assessment based on theoretical dimensions of argumentation could benefit writers, but developing such models has been limited by the lack of annotated data. In this work, we describe GAQCorpus, the first large, domain-diverse annotated corpus of theory-based AQ. We discuss how we designed the annotation task to reliably collect a large number of judgments with crowdsourcing, formulating theory-based guidelines that helped make subjective judgments of AQ more objective. We demonstrate how to identify arguments and adapt the annotation task for three diverse domains. Our work will inform research on theory-based argumentation annotation and enable the creation of more diverse corpora to support computational AQ assessment.
%U https://aclanthology.org/2020.argmining-1.13
%P 117-126
Markdown (Informal)
[Creating a Domain-diverse Corpus for Theory-based Argument Quality Assessment](https://aclanthology.org/2020.argmining-1.13) (Ng et al., ArgMining 2020)
ACL