@inproceedings{kobbe-etal-2020-exploring,
title = "Exploring Morality in Argumentation",
author = "Kobbe, Jonathan and
Rehbein, Ines and
Hulpu{\textcommabelow{s}}, Ioana and
Stuckenschmidt, Heiner",
editor = "Cabrio, Elena and
Villata, Serena",
booktitle = "Proceedings of the 7th Workshop on Argument Mining",
month = dec,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.argmining-1.4",
pages = "30--40",
abstract = "Sentiment and stance are two important concepts for the analysis of arguments. We propose to add another perspective to the analysis, namely moral sentiment. We argue that moral values are crucial for ideological debates and can thus add useful information for argument mining. In the paper, we present different models for automatically predicting moral sentiment in debates and evaluate them on a manually annotated testset. We then apply our models to investigate how moral values in arguments relate to argument quality, stance and audience reactions.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="kobbe-etal-2020-exploring">
<titleInfo>
<title>Exploring Morality in Argumentation</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jonathan</namePart>
<namePart type="family">Kobbe</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ines</namePart>
<namePart type="family">Rehbein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ioana</namePart>
<namePart type="family">Hulpu\textcommabelows</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Heiner</namePart>
<namePart type="family">Stuckenschmidt</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 7th Workshop on Argument Mining</title>
</titleInfo>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Cabrio</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Serena</namePart>
<namePart type="family">Villata</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Sentiment and stance are two important concepts for the analysis of arguments. We propose to add another perspective to the analysis, namely moral sentiment. We argue that moral values are crucial for ideological debates and can thus add useful information for argument mining. In the paper, we present different models for automatically predicting moral sentiment in debates and evaluate them on a manually annotated testset. We then apply our models to investigate how moral values in arguments relate to argument quality, stance and audience reactions.</abstract>
<identifier type="citekey">kobbe-etal-2020-exploring</identifier>
<location>
<url>https://aclanthology.org/2020.argmining-1.4</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>30</start>
<end>40</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Exploring Morality in Argumentation
%A Kobbe, Jonathan
%A Rehbein, Ines
%A Hulpu\textcommabelows, Ioana
%A Stuckenschmidt, Heiner
%Y Cabrio, Elena
%Y Villata, Serena
%S Proceedings of the 7th Workshop on Argument Mining
%D 2020
%8 December
%I Association for Computational Linguistics
%C Online
%F kobbe-etal-2020-exploring
%X Sentiment and stance are two important concepts for the analysis of arguments. We propose to add another perspective to the analysis, namely moral sentiment. We argue that moral values are crucial for ideological debates and can thus add useful information for argument mining. In the paper, we present different models for automatically predicting moral sentiment in debates and evaluate them on a manually annotated testset. We then apply our models to investigate how moral values in arguments relate to argument quality, stance and audience reactions.
%U https://aclanthology.org/2020.argmining-1.4
%P 30-40
Markdown (Informal)
[Exploring Morality in Argumentation](https://aclanthology.org/2020.argmining-1.4) (Kobbe et al., ArgMining 2020)
ACL
- Jonathan Kobbe, Ines Rehbein, Ioana Hulpuș, and Heiner Stuckenschmidt. 2020. Exploring Morality in Argumentation. In Proceedings of the 7th Workshop on Argument Mining, pages 30–40, Online. Association for Computational Linguistics.