@inproceedings{li-etal-2020-bits,
title = "{BIT}{'}s system for the {A}uto{S}im{T}rans 2020",
author = "Li, Minqin and
Cheng, Haodong and
Wang, Yuanjie and
Zhang, Sijia and
Wu, Liting and
Guo, Yuhang",
booktitle = "Proceedings of the First Workshop on Automatic Simultaneous Translation",
month = jul,
year = "2020",
address = "Seattle, Washington",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.autosimtrans-1.6",
doi = "10.18653/v1/2020.autosimtrans-1.6",
pages = "37--44",
abstract = "This paper describes our machine translation systems for the streaming Chinese-to-English translation task of AutoSimTrans 2020. We present a sentence length based method and a sentence boundary detection model based method for the streaming input segmentation. Experimental results of the transcription and the ASR output translation on the development data sets show that the translation system with the detection model based method outperforms the one with the length based method in BLEU score by 1.19 and 0.99 respectively under similar or better latency.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="li-etal-2020-bits">
<titleInfo>
<title>BIT’s system for the AutoSimTrans 2020</title>
</titleInfo>
<name type="personal">
<namePart type="given">Minqin</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Haodong</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuanjie</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sijia</namePart>
<namePart type="family">Zhang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Liting</namePart>
<namePart type="family">Wu</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuhang</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Automatic Simultaneous Translation</title>
</titleInfo>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, Washington</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>This paper describes our machine translation systems for the streaming Chinese-to-English translation task of AutoSimTrans 2020. We present a sentence length based method and a sentence boundary detection model based method for the streaming input segmentation. Experimental results of the transcription and the ASR output translation on the development data sets show that the translation system with the detection model based method outperforms the one with the length based method in BLEU score by 1.19 and 0.99 respectively under similar or better latency.</abstract>
<identifier type="citekey">li-etal-2020-bits</identifier>
<identifier type="doi">10.18653/v1/2020.autosimtrans-1.6</identifier>
<location>
<url>https://aclanthology.org/2020.autosimtrans-1.6</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>37</start>
<end>44</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T BIT’s system for the AutoSimTrans 2020
%A Li, Minqin
%A Cheng, Haodong
%A Wang, Yuanjie
%A Zhang, Sijia
%A Wu, Liting
%A Guo, Yuhang
%S Proceedings of the First Workshop on Automatic Simultaneous Translation
%D 2020
%8 July
%I Association for Computational Linguistics
%C Seattle, Washington
%F li-etal-2020-bits
%X This paper describes our machine translation systems for the streaming Chinese-to-English translation task of AutoSimTrans 2020. We present a sentence length based method and a sentence boundary detection model based method for the streaming input segmentation. Experimental results of the transcription and the ASR output translation on the development data sets show that the translation system with the detection model based method outperforms the one with the length based method in BLEU score by 1.19 and 0.99 respectively under similar or better latency.
%R 10.18653/v1/2020.autosimtrans-1.6
%U https://aclanthology.org/2020.autosimtrans-1.6
%U https://doi.org/10.18653/v1/2020.autosimtrans-1.6
%P 37-44
Markdown (Informal)
[BIT’s system for the AutoSimTrans 2020](https://aclanthology.org/2020.autosimtrans-1.6) (Li et al., AutoSimTrans 2020)
ACL
- Minqin Li, Haodong Cheng, Yuanjie Wang, Sijia Zhang, Liting Wu, and Yuhang Guo. 2020. BIT’s system for the AutoSimTrans 2020. In Proceedings of the First Workshop on Automatic Simultaneous Translation, pages 37–44, Seattle, Washington. Association for Computational Linguistics.