@inproceedings{afrin-etal-2020-annotation,
title = "Annotation and Classification of Evidence and Reasoning Revisions in Argumentative Writing",
author = "Afrin, Tazin and
Wang, Elaine Lin and
Litman, Diane and
Matsumura, Lindsay Clare and
Correnti, Richard",
editor = "Burstein, Jill and
Kochmar, Ekaterina and
Leacock, Claudia and
Madnani, Nitin and
Pil{\'a}n, Ildik{\'o} and
Yannakoudakis, Helen and
Zesch, Torsten",
booktitle = "Proceedings of the Fifteenth Workshop on Innovative Use of NLP for Building Educational Applications",
month = jul,
year = "2020",
address = "Seattle, WA, USA → Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.bea-1.7",
doi = "10.18653/v1/2020.bea-1.7",
pages = "75--84",
abstract = "Automated writing evaluation systems can improve students{'} writing insofar as students attend to the feedback provided and revise their essay drafts in ways aligned with such feedback. Existing research on revision of argumentative writing in such systems, however, has focused on the types of revisions students make (e.g., surface vs. content) rather than the extent to which revisions actually respond to the feedback provided and improve the essay. We introduce an annotation scheme to capture the nature of sentence-level revisions of evidence use and reasoning (the {`}RER{'} scheme) and apply it to 5th- and 6th-grade students{'} argumentative essays. We show that reliable manual annotation can be achieved and that revision annotations correlate with a holistic assessment of essay improvement in line with the feedback provided. Furthermore, we explore the feasibility of automatically classifying revisions according to our scheme.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="afrin-etal-2020-annotation">
<titleInfo>
<title>Annotation and Classification of Evidence and Reasoning Revisions in Argumentative Writing</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tazin</namePart>
<namePart type="family">Afrin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elaine</namePart>
<namePart type="given">Lin</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Diane</namePart>
<namePart type="family">Litman</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lindsay</namePart>
<namePart type="given">Clare</namePart>
<namePart type="family">Matsumura</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Richard</namePart>
<namePart type="family">Correnti</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-07</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Fifteenth Workshop on Innovative Use of NLP for Building Educational Applications</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jill</namePart>
<namePart type="family">Burstein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ekaterina</namePart>
<namePart type="family">Kochmar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claudia</namePart>
<namePart type="family">Leacock</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nitin</namePart>
<namePart type="family">Madnani</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ildikó</namePart>
<namePart type="family">Pilán</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Helen</namePart>
<namePart type="family">Yannakoudakis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Torsten</namePart>
<namePart type="family">Zesch</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Seattle, WA, USA → Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Automated writing evaluation systems can improve students’ writing insofar as students attend to the feedback provided and revise their essay drafts in ways aligned with such feedback. Existing research on revision of argumentative writing in such systems, however, has focused on the types of revisions students make (e.g., surface vs. content) rather than the extent to which revisions actually respond to the feedback provided and improve the essay. We introduce an annotation scheme to capture the nature of sentence-level revisions of evidence use and reasoning (the ‘RER’ scheme) and apply it to 5th- and 6th-grade students’ argumentative essays. We show that reliable manual annotation can be achieved and that revision annotations correlate with a holistic assessment of essay improvement in line with the feedback provided. Furthermore, we explore the feasibility of automatically classifying revisions according to our scheme.</abstract>
<identifier type="citekey">afrin-etal-2020-annotation</identifier>
<identifier type="doi">10.18653/v1/2020.bea-1.7</identifier>
<location>
<url>https://aclanthology.org/2020.bea-1.7</url>
</location>
<part>
<date>2020-07</date>
<extent unit="page">
<start>75</start>
<end>84</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Annotation and Classification of Evidence and Reasoning Revisions in Argumentative Writing
%A Afrin, Tazin
%A Wang, Elaine Lin
%A Litman, Diane
%A Matsumura, Lindsay Clare
%A Correnti, Richard
%Y Burstein, Jill
%Y Kochmar, Ekaterina
%Y Leacock, Claudia
%Y Madnani, Nitin
%Y Pilán, Ildikó
%Y Yannakoudakis, Helen
%Y Zesch, Torsten
%S Proceedings of the Fifteenth Workshop on Innovative Use of NLP for Building Educational Applications
%D 2020
%8 July
%I Association for Computational Linguistics
%C Seattle, WA, USA → Online
%F afrin-etal-2020-annotation
%X Automated writing evaluation systems can improve students’ writing insofar as students attend to the feedback provided and revise their essay drafts in ways aligned with such feedback. Existing research on revision of argumentative writing in such systems, however, has focused on the types of revisions students make (e.g., surface vs. content) rather than the extent to which revisions actually respond to the feedback provided and improve the essay. We introduce an annotation scheme to capture the nature of sentence-level revisions of evidence use and reasoning (the ‘RER’ scheme) and apply it to 5th- and 6th-grade students’ argumentative essays. We show that reliable manual annotation can be achieved and that revision annotations correlate with a holistic assessment of essay improvement in line with the feedback provided. Furthermore, we explore the feasibility of automatically classifying revisions according to our scheme.
%R 10.18653/v1/2020.bea-1.7
%U https://aclanthology.org/2020.bea-1.7
%U https://doi.org/10.18653/v1/2020.bea-1.7
%P 75-84
Markdown (Informal)
[Annotation and Classification of Evidence and Reasoning Revisions in Argumentative Writing](https://aclanthology.org/2020.bea-1.7) (Afrin et al., BEA 2020)
ACL