@inproceedings{celikkanat-etal-2020-controlling,
title = "Controlling the Imprint of Passivization and Negation in Contextualized Representations",
author = {Celikkanat, Hande and
Virpioja, Sami and
Tiedemann, J{\"o}rg and
Apidianaki, Marianna},
editor = "Alishahi, Afra and
Belinkov, Yonatan and
Chrupa{\l}a, Grzegorz and
Hupkes, Dieuwke and
Pinter, Yuval and
Sajjad, Hassan",
booktitle = "Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.blackboxnlp-1.13",
doi = "10.18653/v1/2020.blackboxnlp-1.13",
pages = "136--148",
abstract = "Contextualized word representations encode rich information about syntax and semantics, alongside specificities of each context of use. While contextual variation does not always reflect actual meaning shifts, it can still reduce the similarity of embeddings for word instances having the same meaning. We explore the imprint of two specific linguistic alternations, namely passivization and negation, on the representations generated by neural models trained with two different objectives: masked language modeling and translation. Our exploration methodology is inspired by an approach previously proposed for removing societal biases from word vectors. We show that passivization and negation leave their traces on the representations, and that neutralizing this information leads to more similar embeddings for words that should preserve their meaning in the transformation. We also find clear differences in how the respective features generalize across datasets.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="celikkanat-etal-2020-controlling">
<titleInfo>
<title>Controlling the Imprint of Passivization and Negation in Contextualized Representations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Hande</namePart>
<namePart type="family">Celikkanat</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sami</namePart>
<namePart type="family">Virpioja</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jörg</namePart>
<namePart type="family">Tiedemann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Marianna</namePart>
<namePart type="family">Apidianaki</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Afra</namePart>
<namePart type="family">Alishahi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yonatan</namePart>
<namePart type="family">Belinkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Grzegorz</namePart>
<namePart type="family">Chrupała</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dieuwke</namePart>
<namePart type="family">Hupkes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuval</namePart>
<namePart type="family">Pinter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hassan</namePart>
<namePart type="family">Sajjad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Contextualized word representations encode rich information about syntax and semantics, alongside specificities of each context of use. While contextual variation does not always reflect actual meaning shifts, it can still reduce the similarity of embeddings for word instances having the same meaning. We explore the imprint of two specific linguistic alternations, namely passivization and negation, on the representations generated by neural models trained with two different objectives: masked language modeling and translation. Our exploration methodology is inspired by an approach previously proposed for removing societal biases from word vectors. We show that passivization and negation leave their traces on the representations, and that neutralizing this information leads to more similar embeddings for words that should preserve their meaning in the transformation. We also find clear differences in how the respective features generalize across datasets.</abstract>
<identifier type="citekey">celikkanat-etal-2020-controlling</identifier>
<identifier type="doi">10.18653/v1/2020.blackboxnlp-1.13</identifier>
<location>
<url>https://aclanthology.org/2020.blackboxnlp-1.13</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>136</start>
<end>148</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Controlling the Imprint of Passivization and Negation in Contextualized Representations
%A Celikkanat, Hande
%A Virpioja, Sami
%A Tiedemann, Jörg
%A Apidianaki, Marianna
%Y Alishahi, Afra
%Y Belinkov, Yonatan
%Y Chrupała, Grzegorz
%Y Hupkes, Dieuwke
%Y Pinter, Yuval
%Y Sajjad, Hassan
%S Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F celikkanat-etal-2020-controlling
%X Contextualized word representations encode rich information about syntax and semantics, alongside specificities of each context of use. While contextual variation does not always reflect actual meaning shifts, it can still reduce the similarity of embeddings for word instances having the same meaning. We explore the imprint of two specific linguistic alternations, namely passivization and negation, on the representations generated by neural models trained with two different objectives: masked language modeling and translation. Our exploration methodology is inspired by an approach previously proposed for removing societal biases from word vectors. We show that passivization and negation leave their traces on the representations, and that neutralizing this information leads to more similar embeddings for words that should preserve their meaning in the transformation. We also find clear differences in how the respective features generalize across datasets.
%R 10.18653/v1/2020.blackboxnlp-1.13
%U https://aclanthology.org/2020.blackboxnlp-1.13
%U https://doi.org/10.18653/v1/2020.blackboxnlp-1.13
%P 136-148
Markdown (Informal)
[Controlling the Imprint of Passivization and Negation in Contextualized Representations](https://aclanthology.org/2020.blackboxnlp-1.13) (Celikkanat et al., BlackboxNLP 2020)
ACL