@inproceedings{soulos-etal-2020-discovering,
title = "Discovering the Compositional Structure of Vector Representations with Role Learning Networks",
author = "Soulos, Paul and
McCoy, R. Thomas and
Linzen, Tal and
Smolensky, Paul",
editor = "Alishahi, Afra and
Belinkov, Yonatan and
Chrupa{\l}a, Grzegorz and
Hupkes, Dieuwke and
Pinter, Yuval and
Sajjad, Hassan",
booktitle = "Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.blackboxnlp-1.23/",
doi = "10.18653/v1/2020.blackboxnlp-1.23",
pages = "238--254",
abstract = "How can neural networks perform so well on compositional tasks even though they lack explicit compositional representations? We use a novel analysis technique called ROLE to show that recurrent neural networks perform well on such tasks by converging to solutions which implicitly represent symbolic structure. This method uncovers a symbolic structure which, when properly embedded in vector space, closely approximates the encodings of a standard seq2seq network trained to perform the compositional SCAN task. We verify the causal importance of the discovered symbolic structure by showing that, when we systematically manipulate hidden embeddings based on this symbolic structure, the model`s output is changed in the way predicted by our analysis."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="soulos-etal-2020-discovering">
<titleInfo>
<title>Discovering the Compositional Structure of Vector Representations with Role Learning Networks</title>
</titleInfo>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Soulos</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">R</namePart>
<namePart type="given">Thomas</namePart>
<namePart type="family">McCoy</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tal</namePart>
<namePart type="family">Linzen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Paul</namePart>
<namePart type="family">Smolensky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Afra</namePart>
<namePart type="family">Alishahi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yonatan</namePart>
<namePart type="family">Belinkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Grzegorz</namePart>
<namePart type="family">Chrupała</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dieuwke</namePart>
<namePart type="family">Hupkes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuval</namePart>
<namePart type="family">Pinter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hassan</namePart>
<namePart type="family">Sajjad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>How can neural networks perform so well on compositional tasks even though they lack explicit compositional representations? We use a novel analysis technique called ROLE to show that recurrent neural networks perform well on such tasks by converging to solutions which implicitly represent symbolic structure. This method uncovers a symbolic structure which, when properly embedded in vector space, closely approximates the encodings of a standard seq2seq network trained to perform the compositional SCAN task. We verify the causal importance of the discovered symbolic structure by showing that, when we systematically manipulate hidden embeddings based on this symbolic structure, the model‘s output is changed in the way predicted by our analysis.</abstract>
<identifier type="citekey">soulos-etal-2020-discovering</identifier>
<identifier type="doi">10.18653/v1/2020.blackboxnlp-1.23</identifier>
<location>
<url>https://aclanthology.org/2020.blackboxnlp-1.23/</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>238</start>
<end>254</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Discovering the Compositional Structure of Vector Representations with Role Learning Networks
%A Soulos, Paul
%A McCoy, R. Thomas
%A Linzen, Tal
%A Smolensky, Paul
%Y Alishahi, Afra
%Y Belinkov, Yonatan
%Y Chrupała, Grzegorz
%Y Hupkes, Dieuwke
%Y Pinter, Yuval
%Y Sajjad, Hassan
%S Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F soulos-etal-2020-discovering
%X How can neural networks perform so well on compositional tasks even though they lack explicit compositional representations? We use a novel analysis technique called ROLE to show that recurrent neural networks perform well on such tasks by converging to solutions which implicitly represent symbolic structure. This method uncovers a symbolic structure which, when properly embedded in vector space, closely approximates the encodings of a standard seq2seq network trained to perform the compositional SCAN task. We verify the causal importance of the discovered symbolic structure by showing that, when we systematically manipulate hidden embeddings based on this symbolic structure, the model‘s output is changed in the way predicted by our analysis.
%R 10.18653/v1/2020.blackboxnlp-1.23
%U https://aclanthology.org/2020.blackboxnlp-1.23/
%U https://doi.org/10.18653/v1/2020.blackboxnlp-1.23
%P 238-254
Markdown (Informal)
[Discovering the Compositional Structure of Vector Representations with Role Learning Networks](https://aclanthology.org/2020.blackboxnlp-1.23/) (Soulos et al., BlackboxNLP 2020)
ACL