@inproceedings{jumelet-2020-diagnnose,
title = "diag{NN}ose: A Library for Neural Activation Analysis",
author = "Jumelet, Jaap",
editor = "Alishahi, Afra and
Belinkov, Yonatan and
Chrupa{\l}a, Grzegorz and
Hupkes, Dieuwke and
Pinter, Yuval and
Sajjad, Hassan",
booktitle = "Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.blackboxnlp-1.32",
doi = "10.18653/v1/2020.blackboxnlp-1.32",
pages = "342--350",
abstract = "In this paper we introduce diagNNose, an open source library for analysing the activations of deep neural networks. diagNNose contains a wide array of interpretability techniques that provide fundamental insights into the inner workings of neural networks. We demonstrate the functionality of diagNNose with a case study on subject-verb agreement within language models. diagNNose is available at \url{https://github.com/i-machine-think/diagnnose}.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="jumelet-2020-diagnnose">
<titleInfo>
<title>diagNNose: A Library for Neural Activation Analysis</title>
</titleInfo>
<name type="personal">
<namePart type="given">Jaap</namePart>
<namePart type="family">Jumelet</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP</title>
</titleInfo>
<name type="personal">
<namePart type="given">Afra</namePart>
<namePart type="family">Alishahi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yonatan</namePart>
<namePart type="family">Belinkov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Grzegorz</namePart>
<namePart type="family">Chrupała</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Dieuwke</namePart>
<namePart type="family">Hupkes</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yuval</namePart>
<namePart type="family">Pinter</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hassan</namePart>
<namePart type="family">Sajjad</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>In this paper we introduce diagNNose, an open source library for analysing the activations of deep neural networks. diagNNose contains a wide array of interpretability techniques that provide fundamental insights into the inner workings of neural networks. We demonstrate the functionality of diagNNose with a case study on subject-verb agreement within language models. diagNNose is available at https://github.com/i-machine-think/diagnnose.</abstract>
<identifier type="citekey">jumelet-2020-diagnnose</identifier>
<identifier type="doi">10.18653/v1/2020.blackboxnlp-1.32</identifier>
<location>
<url>https://aclanthology.org/2020.blackboxnlp-1.32</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>342</start>
<end>350</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T diagNNose: A Library for Neural Activation Analysis
%A Jumelet, Jaap
%Y Alishahi, Afra
%Y Belinkov, Yonatan
%Y Chrupała, Grzegorz
%Y Hupkes, Dieuwke
%Y Pinter, Yuval
%Y Sajjad, Hassan
%S Proceedings of the Third BlackboxNLP Workshop on Analyzing and Interpreting Neural Networks for NLP
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F jumelet-2020-diagnnose
%X In this paper we introduce diagNNose, an open source library for analysing the activations of deep neural networks. diagNNose contains a wide array of interpretability techniques that provide fundamental insights into the inner workings of neural networks. We demonstrate the functionality of diagNNose with a case study on subject-verb agreement within language models. diagNNose is available at https://github.com/i-machine-think/diagnnose.
%R 10.18653/v1/2020.blackboxnlp-1.32
%U https://aclanthology.org/2020.blackboxnlp-1.32
%U https://doi.org/10.18653/v1/2020.blackboxnlp-1.32
%P 342-350
Markdown (Informal)
[diagNNose: A Library for Neural Activation Analysis](https://aclanthology.org/2020.blackboxnlp-1.32) (Jumelet, BlackboxNLP 2020)
ACL