Sparse Transcription

Steven Bird


Abstract
The transcription bottleneck is often cited as a major obstacle for efforts to document the world’s endangered languages and supply them with language technologies. One solution is to extend methods from automatic speech recognition and machine translation, and recruit linguists to provide narrow phonetic transcriptions and sentence-aligned translations. However, I believe that these approaches are not a good fit with the available data and skills, or with long-established practices that are essentially word-based. In seeking a more effective approach, I consider a century of transcription practice and a wide range of computational approaches, before proposing a computational model based on spoken term detection that I call “sparse transcription.” This represents a shift away from current assumptions that we transcribe phones, transcribe fully, and transcribe first. Instead, sparse transcription combines the older practice of word-level transcription with interpretive, iterative, and interactive processes that are amenable to wider participation and that open the way to new methods for processing oral languages.
Anthology ID:
2020.cl-4.1
Volume:
Computational Linguistics, Volume 46, Issue 4 - December 2020
Month:
December
Year:
2020
Address:
Venue:
CL
SIG:
Publisher:
Note:
Pages:
713–744
Language:
URL:
https://aclanthology.org/2020.cl-4.1
DOI:
10.1162/coli_a_00387
Bibkey:
Cite (ACL):
Steven Bird. 2020. Sparse Transcription. Computational Linguistics, 46(4):713–744.
Cite (Informal):
Sparse Transcription (Bird, CL 2020)
Copy Citation:
PDF:
https://aclanthology.org/2020.cl-4.1.pdf