@inproceedings{heo-etal-2020-various,
title = "Various Approaches for Predicting Stroke Prognosis using Magnetic Resonance Imaging Text Records",
author = "Heo, Tak-Sung and
Kim, Chulho and
Choi, Jeong-Myeong and
Jeong, Yeong-Seok and
Kim, Yu-Seop",
editor = "Rumshisky, Anna and
Roberts, Kirk and
Bethard, Steven and
Naumann, Tristan",
booktitle = "Proceedings of the 3rd Clinical Natural Language Processing Workshop",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.clinicalnlp-1.1",
doi = "10.18653/v1/2020.clinicalnlp-1.1",
pages = "1--6",
abstract = "Stroke is one of the leading causes of death and disability worldwide. Stroke is treatable, but it is prone to disability after treatment and must be prevented. To grasp the degree of disability caused by stroke, we use magnetic resonance imaging text records to predict stroke and measure the performance according to the document-level and sentence-level representation. As a result of the experiment, the document-level representation shows better performance.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="heo-etal-2020-various">
<titleInfo>
<title>Various Approaches for Predicting Stroke Prognosis using Magnetic Resonance Imaging Text Records</title>
</titleInfo>
<name type="personal">
<namePart type="given">Tak-Sung</namePart>
<namePart type="family">Heo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chulho</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jeong-Myeong</namePart>
<namePart type="family">Choi</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yeong-Seok</namePart>
<namePart type="family">Jeong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Yu-Seop</namePart>
<namePart type="family">Kim</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 3rd Clinical Natural Language Processing Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rumshisky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kirk</namePart>
<namePart type="family">Roberts</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tristan</namePart>
<namePart type="family">Naumann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Stroke is one of the leading causes of death and disability worldwide. Stroke is treatable, but it is prone to disability after treatment and must be prevented. To grasp the degree of disability caused by stroke, we use magnetic resonance imaging text records to predict stroke and measure the performance according to the document-level and sentence-level representation. As a result of the experiment, the document-level representation shows better performance.</abstract>
<identifier type="citekey">heo-etal-2020-various</identifier>
<identifier type="doi">10.18653/v1/2020.clinicalnlp-1.1</identifier>
<location>
<url>https://aclanthology.org/2020.clinicalnlp-1.1</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>1</start>
<end>6</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Various Approaches for Predicting Stroke Prognosis using Magnetic Resonance Imaging Text Records
%A Heo, Tak-Sung
%A Kim, Chulho
%A Choi, Jeong-Myeong
%A Jeong, Yeong-Seok
%A Kim, Yu-Seop
%Y Rumshisky, Anna
%Y Roberts, Kirk
%Y Bethard, Steven
%Y Naumann, Tristan
%S Proceedings of the 3rd Clinical Natural Language Processing Workshop
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F heo-etal-2020-various
%X Stroke is one of the leading causes of death and disability worldwide. Stroke is treatable, but it is prone to disability after treatment and must be prevented. To grasp the degree of disability caused by stroke, we use magnetic resonance imaging text records to predict stroke and measure the performance according to the document-level and sentence-level representation. As a result of the experiment, the document-level representation shows better performance.
%R 10.18653/v1/2020.clinicalnlp-1.1
%U https://aclanthology.org/2020.clinicalnlp-1.1
%U https://doi.org/10.18653/v1/2020.clinicalnlp-1.1
%P 1-6
Markdown (Informal)
[Various Approaches for Predicting Stroke Prognosis using Magnetic Resonance Imaging Text Records](https://aclanthology.org/2020.clinicalnlp-1.1) (Heo et al., ClinicalNLP 2020)
ACL