@inproceedings{dupuis-etal-2020-relative,
title = "Relative and Incomplete Time Expression Anchoring for Clinical Text",
author = "Dupuis, Louise and
Bergou, Nicol and
Tissot, Hegler and
Velupillai, Sumithra",
editor = "Rumshisky, Anna and
Roberts, Kirk and
Bethard, Steven and
Naumann, Tristan",
booktitle = "Proceedings of the 3rd Clinical Natural Language Processing Workshop",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.clinicalnlp-1.14",
doi = "10.18653/v1/2020.clinicalnlp-1.14",
pages = "117--129",
abstract = "Extracting and modeling temporal information in clinical text is an important element for developing timelines and disease trajectories. Time information in written text varies in preciseness and explicitness, posing challenges for NLP approaches that aim to accurately anchor temporal information on a timeline. Relative and incomplete time expressions (RI-Timexes) are expressions that require additional information for their temporal anchor to be resolved, but few studies have addressed this challenge specifically. In this study, we aimed to reproduce and verify a classification approach for identifying anchor dates and relations in clinical text, and propose a novel relation classification approach for this task.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="dupuis-etal-2020-relative">
<titleInfo>
<title>Relative and Incomplete Time Expression Anchoring for Clinical Text</title>
</titleInfo>
<name type="personal">
<namePart type="given">Louise</namePart>
<namePart type="family">Dupuis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nicol</namePart>
<namePart type="family">Bergou</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Hegler</namePart>
<namePart type="family">Tissot</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sumithra</namePart>
<namePart type="family">Velupillai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 3rd Clinical Natural Language Processing Workshop</title>
</titleInfo>
<name type="personal">
<namePart type="given">Anna</namePart>
<namePart type="family">Rumshisky</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kirk</namePart>
<namePart type="family">Roberts</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bethard</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tristan</namePart>
<namePart type="family">Naumann</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Extracting and modeling temporal information in clinical text is an important element for developing timelines and disease trajectories. Time information in written text varies in preciseness and explicitness, posing challenges for NLP approaches that aim to accurately anchor temporal information on a timeline. Relative and incomplete time expressions (RI-Timexes) are expressions that require additional information for their temporal anchor to be resolved, but few studies have addressed this challenge specifically. In this study, we aimed to reproduce and verify a classification approach for identifying anchor dates and relations in clinical text, and propose a novel relation classification approach for this task.</abstract>
<identifier type="citekey">dupuis-etal-2020-relative</identifier>
<identifier type="doi">10.18653/v1/2020.clinicalnlp-1.14</identifier>
<location>
<url>https://aclanthology.org/2020.clinicalnlp-1.14</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>117</start>
<end>129</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Relative and Incomplete Time Expression Anchoring for Clinical Text
%A Dupuis, Louise
%A Bergou, Nicol
%A Tissot, Hegler
%A Velupillai, Sumithra
%Y Rumshisky, Anna
%Y Roberts, Kirk
%Y Bethard, Steven
%Y Naumann, Tristan
%S Proceedings of the 3rd Clinical Natural Language Processing Workshop
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F dupuis-etal-2020-relative
%X Extracting and modeling temporal information in clinical text is an important element for developing timelines and disease trajectories. Time information in written text varies in preciseness and explicitness, posing challenges for NLP approaches that aim to accurately anchor temporal information on a timeline. Relative and incomplete time expressions (RI-Timexes) are expressions that require additional information for their temporal anchor to be resolved, but few studies have addressed this challenge specifically. In this study, we aimed to reproduce and verify a classification approach for identifying anchor dates and relations in clinical text, and propose a novel relation classification approach for this task.
%R 10.18653/v1/2020.clinicalnlp-1.14
%U https://aclanthology.org/2020.clinicalnlp-1.14
%U https://doi.org/10.18653/v1/2020.clinicalnlp-1.14
%P 117-129
Markdown (Informal)
[Relative and Incomplete Time Expression Anchoring for Clinical Text](https://aclanthology.org/2020.clinicalnlp-1.14) (Dupuis et al., ClinicalNLP 2020)
ACL