@inproceedings{filgueira-etal-2020-geoparsing,
title = "Geoparsing the historical Gazetteers of {S}cotland: accurately computing location in mass digitised texts",
author = "Filgueira, Rosa and
Grover, Claire and
Terras, Melissa and
Alex, Beatrice",
booktitle = "Proceedings of the 8th Workshop on Challenges in the Management of Large Corpora",
month = may,
year = "2020",
address = "Marseille, France",
publisher = "European Language Ressources Association",
url = "https://aclanthology.org/2020.cmlc-1.4",
pages = "24--30",
abstract = "This paper describes work in progress on devising automatic and parallel methods for geoparsing large digital historical textual data by combining the strengths of three natural language processing (NLP) tools, the Edinburgh Geoparser, spaCy and defoe, and employing different tokenisation and named entity recognition (NER) techniques. We apply these tools to a large collection of nineteenth century Scottish geographical dictionaries, and describe preliminary results obtained when processing this data.",
language = "English",
ISBN = "979-10-95546-61-0",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="filgueira-etal-2020-geoparsing">
<titleInfo>
<title>Geoparsing the historical Gazetteers of Scotland: accurately computing location in mass digitised texts</title>
</titleInfo>
<name type="personal">
<namePart type="given">Rosa</namePart>
<namePart type="family">Filgueira</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Claire</namePart>
<namePart type="family">Grover</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Melissa</namePart>
<namePart type="family">Terras</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Beatrice</namePart>
<namePart type="family">Alex</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-05</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<language>
<languageTerm type="text">English</languageTerm>
<languageTerm type="code" authority="iso639-2b">eng</languageTerm>
</language>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 8th Workshop on Challenges in the Management of Large Corpora</title>
</titleInfo>
<originInfo>
<publisher>European Language Ressources Association</publisher>
<place>
<placeTerm type="text">Marseille, France</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
<identifier type="isbn">979-10-95546-61-0</identifier>
</relatedItem>
<abstract>This paper describes work in progress on devising automatic and parallel methods for geoparsing large digital historical textual data by combining the strengths of three natural language processing (NLP) tools, the Edinburgh Geoparser, spaCy and defoe, and employing different tokenisation and named entity recognition (NER) techniques. We apply these tools to a large collection of nineteenth century Scottish geographical dictionaries, and describe preliminary results obtained when processing this data.</abstract>
<identifier type="citekey">filgueira-etal-2020-geoparsing</identifier>
<location>
<url>https://aclanthology.org/2020.cmlc-1.4</url>
</location>
<part>
<date>2020-05</date>
<extent unit="page">
<start>24</start>
<end>30</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Geoparsing the historical Gazetteers of Scotland: accurately computing location in mass digitised texts
%A Filgueira, Rosa
%A Grover, Claire
%A Terras, Melissa
%A Alex, Beatrice
%S Proceedings of the 8th Workshop on Challenges in the Management of Large Corpora
%D 2020
%8 May
%I European Language Ressources Association
%C Marseille, France
%@ 979-10-95546-61-0
%G English
%F filgueira-etal-2020-geoparsing
%X This paper describes work in progress on devising automatic and parallel methods for geoparsing large digital historical textual data by combining the strengths of three natural language processing (NLP) tools, the Edinburgh Geoparser, spaCy and defoe, and employing different tokenisation and named entity recognition (NER) techniques. We apply these tools to a large collection of nineteenth century Scottish geographical dictionaries, and describe preliminary results obtained when processing this data.
%U https://aclanthology.org/2020.cmlc-1.4
%P 24-30
Markdown (Informal)
[Geoparsing the historical Gazetteers of Scotland: accurately computing location in mass digitised texts](https://aclanthology.org/2020.cmlc-1.4) (Filgueira et al., CMLC 2020)
ACL