@inproceedings{chen-etal-2020-joint-modeling,
title = "Joint Modeling of Arguments for Event Understanding",
author = "Chen, Yunmo and
Chen, Tongfei and
Van Durme, Benjamin",
editor = "Braud, Chlo{\'e} and
Hardmeier, Christian and
Li, Junyi Jessy and
Louis, Annie and
Strube, Michael",
booktitle = "Proceedings of the First Workshop on Computational Approaches to Discourse",
month = nov,
year = "2020",
address = "Online",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2020.codi-1.10",
doi = "10.18653/v1/2020.codi-1.10",
pages = "96--101",
abstract = "We recognize the task of event argument linking in documents as similar to that of intent slot resolution in dialogue, providing a Transformer-based model that extends from a recently proposed solution to resolve references to slots. The approach allows for joint consideration of argument candidates given a detected event, which we illustrate leads to state-of-the-art performance in multi-sentence argument linking.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="chen-etal-2020-joint-modeling">
<titleInfo>
<title>Joint Modeling of Arguments for Event Understanding</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yunmo</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tongfei</namePart>
<namePart type="family">Chen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Benjamin</namePart>
<namePart type="family">Van Durme</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-11</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the First Workshop on Computational Approaches to Discourse</title>
</titleInfo>
<name type="personal">
<namePart type="given">Chloé</namePart>
<namePart type="family">Braud</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Christian</namePart>
<namePart type="family">Hardmeier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Junyi</namePart>
<namePart type="given">Jessy</namePart>
<namePart type="family">Li</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Annie</namePart>
<namePart type="family">Louis</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Michael</namePart>
<namePart type="family">Strube</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>Association for Computational Linguistics</publisher>
<place>
<placeTerm type="text">Online</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We recognize the task of event argument linking in documents as similar to that of intent slot resolution in dialogue, providing a Transformer-based model that extends from a recently proposed solution to resolve references to slots. The approach allows for joint consideration of argument candidates given a detected event, which we illustrate leads to state-of-the-art performance in multi-sentence argument linking.</abstract>
<identifier type="citekey">chen-etal-2020-joint-modeling</identifier>
<identifier type="doi">10.18653/v1/2020.codi-1.10</identifier>
<location>
<url>https://aclanthology.org/2020.codi-1.10</url>
</location>
<part>
<date>2020-11</date>
<extent unit="page">
<start>96</start>
<end>101</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Joint Modeling of Arguments for Event Understanding
%A Chen, Yunmo
%A Chen, Tongfei
%A Van Durme, Benjamin
%Y Braud, Chloé
%Y Hardmeier, Christian
%Y Li, Junyi Jessy
%Y Louis, Annie
%Y Strube, Michael
%S Proceedings of the First Workshop on Computational Approaches to Discourse
%D 2020
%8 November
%I Association for Computational Linguistics
%C Online
%F chen-etal-2020-joint-modeling
%X We recognize the task of event argument linking in documents as similar to that of intent slot resolution in dialogue, providing a Transformer-based model that extends from a recently proposed solution to resolve references to slots. The approach allows for joint consideration of argument candidates given a detected event, which we illustrate leads to state-of-the-art performance in multi-sentence argument linking.
%R 10.18653/v1/2020.codi-1.10
%U https://aclanthology.org/2020.codi-1.10
%U https://doi.org/10.18653/v1/2020.codi-1.10
%P 96-101
Markdown (Informal)
[Joint Modeling of Arguments for Event Understanding](https://aclanthology.org/2020.codi-1.10) (Chen et al., CODI 2020)
ACL