@inproceedings{farmanbar-etal-2020-semantic,
title = "Semantic search with domain-specific word-embedding and production monitoring in Fintech",
author = "Farmanbar, Mojtaba and
Van Ommeren, Nikki and
Zhao, Boyang",
editor = "Ptaszynski, Michal and
Ziolko, Bartosz",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics: System Demonstrations",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics (ICCL)",
url = "https://aclanthology.org/2020.coling-demos.6",
doi = "10.18653/v1/2020.coling-demos.6",
pages = "28--33",
abstract = "We present an end-to-end information retrieval system with domain-specific custom language models for accurate search terms expansion. The text mining pipeline tackles several challenges faced in an industry-setting, including multi-lingual jargon-rich unstructured text and privacy compliance. Combined with a novel statistical approach for word embedding evaluations, the models can be monitored in a production setting. Our approach is used in the real world in risk management in the financial sector and has wide applicability to other domains.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="farmanbar-etal-2020-semantic">
<titleInfo>
<title>Semantic search with domain-specific word-embedding and production monitoring in Fintech</title>
</titleInfo>
<name type="personal">
<namePart type="given">Mojtaba</namePart>
<namePart type="family">Farmanbar</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nikki</namePart>
<namePart type="family">Van Ommeren</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Boyang</namePart>
<namePart type="family">Zhao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics: System Demonstrations</title>
</titleInfo>
<name type="personal">
<namePart type="given">Michal</namePart>
<namePart type="family">Ptaszynski</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Bartosz</namePart>
<namePart type="family">Ziolko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics (ICCL)</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We present an end-to-end information retrieval system with domain-specific custom language models for accurate search terms expansion. The text mining pipeline tackles several challenges faced in an industry-setting, including multi-lingual jargon-rich unstructured text and privacy compliance. Combined with a novel statistical approach for word embedding evaluations, the models can be monitored in a production setting. Our approach is used in the real world in risk management in the financial sector and has wide applicability to other domains.</abstract>
<identifier type="citekey">farmanbar-etal-2020-semantic</identifier>
<identifier type="doi">10.18653/v1/2020.coling-demos.6</identifier>
<location>
<url>https://aclanthology.org/2020.coling-demos.6</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>28</start>
<end>33</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Semantic search with domain-specific word-embedding and production monitoring in Fintech
%A Farmanbar, Mojtaba
%A Van Ommeren, Nikki
%A Zhao, Boyang
%Y Ptaszynski, Michal
%Y Ziolko, Bartosz
%S Proceedings of the 28th International Conference on Computational Linguistics: System Demonstrations
%D 2020
%8 December
%I International Committee on Computational Linguistics (ICCL)
%C Barcelona, Spain (Online)
%F farmanbar-etal-2020-semantic
%X We present an end-to-end information retrieval system with domain-specific custom language models for accurate search terms expansion. The text mining pipeline tackles several challenges faced in an industry-setting, including multi-lingual jargon-rich unstructured text and privacy compliance. Combined with a novel statistical approach for word embedding evaluations, the models can be monitored in a production setting. Our approach is used in the real world in risk management in the financial sector and has wide applicability to other domains.
%R 10.18653/v1/2020.coling-demos.6
%U https://aclanthology.org/2020.coling-demos.6
%U https://doi.org/10.18653/v1/2020.coling-demos.6
%P 28-33
Markdown (Informal)
[Semantic search with domain-specific word-embedding and production monitoring in Fintech](https://aclanthology.org/2020.coling-demos.6) (Farmanbar et al., COLING 2020)
ACL