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Abstract

The quality of Natural Language Understanding (NLU) models is typically evaluated using
aggregated metrics on a large number of utterances. In a dialog system, though, the manual
analysis of failures on specific utterances is a time-consuming and yet critical endeavor to
guarantee a high-quality customer experience. A crucial question for this analysis is how to create
a test set of utterances that covers a diversity of possible customer requests. In this paper, we
introduce the task of generating a test set with high semantic diversity for NLU evaluation in dialog
systems and we describe an approach to address it. The approach starts by extracting high-traffic
utterance patterns. Then, for each pattern, it achieves high diversity selecting utterances from
different regions of the utterance embedding space. We compare three selection strategies based
on clustering of utterances in the embedding space, on solving the maximum distance optimization
problem and on simple heuristics such as random uniform sampling and popularity. The evaluation
shows that the highest semantic and lexicon diversity is obtained by a greedy maximum sum of
distance solver in a comparable runtime with the clustering and the heuristics approaches.

1 Background

In the past years, voice-first dialog systems have become ubiquitous in the market, with an ever increasing
number of features, languages and customer requests. A crucial component of these systems is the Natural
Language Understanding (NLU) model. The NLU model maps customer requests onto specific actions
that the device has to perform. In practice, this means classifying an utterance into a domain, intent and
slots (Su et al., 2018). For instance, given the customer’s utterance "play madonna", an NLU model
returns: (Music, PlayMusicIntent, play ArtistName) where Music is the domain, PlayMusicIntent is the
intent and the slot is ArtistName. When a new algorithm for NLU is proposed in a research environment,
the evaluation is typically performed by aggregating metrics such as Slot Error Rate (SER) (Makhoul et
al., 1999) and Semantic Error Rate (SemER) (Su et al., 2018) on a large test set of utterances. However,
in a production environment, aggregated metrics alone are not sufficient, as they may hide failures on
specific business critical utterances. Thus, whenever a change is introduced into an NLU model, failures
need to be manually reviewed to determine whether they represent an issue for the customers. The manual
review of failures is a crucial, and yet very time-consuming operation. Hence, the question: how to create
a test set that makes the analysis more efficient including a diversity of patterns, utterances and possibile
failure causes? The problem of maximizing semantic diversity in text is common in tasks such as text
summarization (Zhu et al., 2007), text generation (Xu et al., 2018), keyphrase extraction (Bennani-Smires
et al., 2018), machine translation (Shu et al., 2019), data augmentation in dialog systems (Hou et al.,
2018; Cho et al., 2019). However, to the best our knowledge, semantic diversity has never been used to
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create test sets for the evaluation of natural language understanding models in dialog systems.

In this paper, we introduce an approach to automate the creation of test sets with high semantic diversity
for the evaluation of the NLU model in a dialog system. The approach works as follows. First, we filter the
dataset extracting a set of high-traffic pattern. Then, for each pattern, we map utterances into an embedding
space to represent the semantics of the different slot values. Finally, we create test sets comparing three
selection algorithms based on partitioning the space in groups and selecting representatives or on directly
solving a maximum sum of distance optimization problem to achieve high diversity.

2 Approach

The approach can be divided in three major steps: pattern extraction, encoding and selection (Fig. 1).
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Figure 1: A bird’s eye view over the proposed approach. High-traffic patterns are extracted and, for a
specific pattern, utterances are embedded into a vector space in the encoding stage. Then, the selection
stage selects points that are far apart in the vector space to create a test set with high diversity (red points),

2.1 Pattern Extraction
As of today, pattern-based rules such as Finite State Transducers (FSTs) (Karttunen, 2000) still play a
very important role in NLU models. FSTs work by mapping into domain, intent and slots utterances
that exactly match structures such as “play SongName”, “play SongName please”, “please can you play
SongName”. We call these structures “semantic frames”, and, together with domain and intent, they are a
suitable definition of “pattern” that can break in an FST. Given a domain d ∈ D, an intent i ∈ I and a
semantic frames c ∈ C, we define a pattern p ∈ P as:

p = (d, i, c) (1)

such as “Music, PlayMusicIntent, play SongName” or “Weather, GetWeatherForecastIntent, what is
the weather like in CityName”. We use a dataset composed by ~5M annotated utterances that contains
~400 high-traffic patterns. Even within a specific pattern, though, the variability can be high and the
selection strategy should be diversity-aware. Consider the example of “play SongName”: a huge amount
of possible songs are present in the dataset. The resulting test set should include a diversity of songs,
both in terms of lexicon, that is different wordings, and also in terms of semantics, for instance different
musical genres.

2.2 Encoding
A crucial point for measuring diversity is finding an adequate vector representation of words and utterances
where similarity metrics can be easily applied. word2vec embeddings (Mikolov et al., 2013) have
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shown the effectiveness of the Continuous Bag of Words and Skip-gram architectures to learn word
representations, gaining tremendous popularity. FastText (Bojanowski et al., 2017) improves the word2vec
model including subword information (character n-grams) into the skip-gram architecture. In this work,
we use FastText to map utterances into embeddings. This means that the model is trained to predict,
given a character n-gram as input, the surrounding character n-grams in a predefined window. Given an
utterance s(p) of a pattern p and its K character n-grams ki(s(p)) we obtain the vector representation of
the utterance ŝ(p):

ŝ(p) =
1

K

K∑
i=1

fasttext_pretrained_vector(ki(s(p))) (2)

Currently, popular models such as ELMo (Peters et al., 2018) or BERT (Devlin et al., 2019) further
improve word representations by considering the context or embedding the whole sentence based on
neighboring sentences (Kiros et al., 2015). We choose FastText over more sophisticated embedding
models because it is frugal (fast at retrieval times on CPU), and it provides pre-trained models for 157
different languages. The major drawback of averaging character n-grams embeddings in this way is that
we lose information on how the sentence is structured, e.g. the order of the tokens. However, given that
we perform the encoding in pattern-wise manner, the structure of the sentence is fixed as described in
Sec.2.1 and the variations mostly come from the values that occur in the slots.

2.3 Selection
Definition 1 Given a pattern p, M = |p| is the total number of utterances in the pattern

Definition 2 Given a pattern p, m ≤M is the total number of utterances to be selected for the pattern

Definition 3 Given the vector representation of an utterance ŝ(p), d = |ŝ(p)| is the number of dimensions
of the vector.

Definition 4 X(p) = (ŝ1(p), ..., ŝM (p)) is the matrix that contains the vector representations of all the
utterances in a pattern p

We compare the following approaches to select points from the vector space:

PSA The Part and Select Algorithm (PSA) (Salomon et al., 2013) has two steps: first, it partitions
the space grouping similar points; then it selects a diverse subset by choosing one member for each of
the groups. To partition the space in m subsets, PSA makes m − 1 divisions of a single set into two
subsets. Given the minimum and maximum values of a feature aj = mini(Xij) and bj = maxi(Xij),
the diameter of a subset is defined as A = maxj(bj − aj). The partitioning of the space works iteratively,
searching among all the subsets the one that has the maximum diameter A, and splitting in half the subset
along the feature j that maximizes the diameter. Then, for each of the m subset, the point that is closest to
the center of the hyperretangle is selected. PSA has a runtime complexity that is O(M ∗m ∗ d).

KMeans KMeans (Hartigan and Wong, 1979) is arguably the most popular clustering algorithm, it
works by dividing the data in a predefined number of groups minimizing the within-cluster sum of squares.
For each pattern with M utterances, we apply KMeans to obtain m clusters, and then we select the nearest
point to the centroid to be part of the subset. KMeans has a runtime complexity of O(M ∗m ∗ d).

MaxSum MaxSum (Ghosh, 1996) solves the optimization problem of finding a subset of points that
have the maximum sum of distances among each other. Given that the problem is NP-hard, we use a
greedy approach that iteratively selects points that maximize the objective and has a linear runtime
complexity O(M ∗m ∗ d).

As baselines, we also include the Random Sampler, which selects m points per pattern using a uniform
distribution, and the Popularity Sampler, which selects the most frequently used m utterances for each
pattern. For all selection algorithms, we set as the default percentage of utterances to select for each
pattern f = 0.01. Given the number of utterances in a pattern M and f , we determine the number of
points to select and set the number of clusters m = Mf in the clustering algorithms. When using the
proposed approach, we recommend to set the value of f depending on the desired size of the test set.
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3 Evaluation

We evaluate the inherent diversity of the test sets that the selection algorithms generate measuring how
‘distant’ two utterances are on average in the subsets that we generate using the following metrics:

• SelfBLEU (Zhu et al., 2018) was recently introduced to measure the diversity of artifically generated
text, it computes BLEU (Papineni et al., 2002) comparing a set of utterances with themselves rather
than with a reference. We use it as follows:

SelfBLEU =
1

N

N∑
p=1

avgi,j(1−BLEU(s(p)i, s(p)j)) (3)

• Jaccard: average word overlap across test utterances

Jaccard =
1

N

N∑
p=1

avgi,j(1− word_overlap(s(p)i, s(p)j)) (4)

• Word Embedding Diversity (WED): similar to the Word Embedding Similarity (Agirre et al.,
2016), it is the average cosine distance between embeddings of vectors in the test set:

WED =
1

N

N∑
p=1

avgi,j(1− cosine_similarity(ŝ(p)i, ŝ(p)j)) (5)

Note that SelfBLEU and Jaccard only consider word and n-gram level similarities, whereas WED can
also take into account word semantics.

4 Results

We compare the selection algorithms computing the relative percentage improvement with respect to
random selection on the diversity metrics (Tab. 1). The results show that, in general, all diversity-aware
algorithms achieve higher diversity with respect to Random and Popularity generates the lowest diversity.
MaxSum solver obtains the best diversity both at the semantic (WED) and at the lexicon level (SelfBLEU,
Jaccard). Interestingly, PSA performs better than KMeans for metrics that take into account words
and n-grams overlaps, i.e. at a lexicon level, whereas KMeans works better for WED, which measures
embedding distance at a semantic level. Random is the fastest algorithm, but the runtime is comparable
for all the algorithms.

Algorithm WED SelfBLEU-2 SelfBLEU-3 SelfBLEU-4 Jaccard Runtime (s)
PSA 24.73 2.33 1.97 1.53 1.93 12178

KMeans 26.13 2.20 1.96 1.59 1.87 13679
MaxSum 38.7 6.96 6.13 4.9 5.31 12219
Random 0.0 0.0 0.0 0.0 0.0 11959

Popularity -12.98 -10.88 -9.66 -7.75 -7.75 12011

Table 1: Diversity comparison of the selectiong algorithms as a relative % change with respect to Random
sampling. In SelfBLEU-n, n is the size of the n-gram used. Results are significant for all pairs of
algorithms and for all metrics with a paired t-test with p<0.05.

5 Conclusions

In this paper, we have introduced the problem of creating a test set with high semantic diversity to evaluate
the NLU model of a dialog system. We have described the problem motivation and we have introduced an
approach to address it. The experimental comparison among different diversity-aware selection algorithms
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shows that the MaxSum sampler obtains the best diversity, both at the semantic (WED) and at the lexicon
level (SelfBLEU, Jaccard). For all the diversity-aware approaches (PSA, KMeans, MaxSum), runtime is
comparable to simple heuristics such as random and popularity selection. As a future work, we will create
a ground truth to see how well our diversity metrics correlate with human judgement. The ground truth
will also be key to exploring the effectiveness of hybrid approaches that combine diverisity and coverage,
taking into the frequency of customer requests. We also plan to experiment with more encoding algorithms,
such as frugal light-weight transformer-based approaches that have been recently proposed (Sanh et al.,
2019) and have shown to better represent complex utterances.
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