
Proceedings of the 28th International Conference on Computational Linguistics, pages 1359–1370
Barcelona, Spain (Online), December 8-13, 2020

1359

What Can We Learn from Noun Substitutions in Revision Histories?

Talita Rani Anthonio Michael Roth

Institute for Natural Language Processing
University of Stuttgart

{anthonta,rothml}@ims.uni-stuttgart.de

Abstract

In community-edited resources such as wikiHow, sentences are subject to revisions on a daily
basis. Recent work has shown that resulting improvements over time can be modelled compu-
tationally, assuming that each revision contributes to the improvement. We take a closer look at
a subset of such revisions, for which we attempt to improve a computational model and validate
in how far the assumption that ‘revised means better’ actually holds. The subset of revisions
considered here are noun substitutions, which often involve interesting semantic relations, in-
cluding synonymy, antonymy and hypernymy. Despite the high semantic relatedness, we find
that a supervised classifier can distinguish the revised version of a sentence from an original ver-
sion with an accuracy close to 70%, when taking context into account. In a human annotation
study, we observe that annotators identify the revised sentence as the ‘better version’ with similar
performance. Our analysis reveals a fair agreement among annotators when a revision improves
fluency. In contrast, noun substitutions that involve common lexical-semantic relationships are
often perceived as being equally good or tend to cause disagreements. While these findings are
also reflected in classification scores, a comparison of results shows that our model fails in cases
where humans can resort to factual knowledge or intuitions about the required level of specificity.

1 Introduction

Instructional texts often go through multiple revisions. For their final form, the author has to ensure
that it is clear in which sequence described actions need to be performed and in what manner they
have to be executed. A collection of revisions of instructional texts can be found, for instance, on the
community-edited platform wikiHow. In previous work using wikiHow revision histories, we showed
that improvements in texts can be modeled computationally under the assumption that revised sentences
are better than their predecessors (Anthonio et al., 2020). This assumption seems intuitive for edits
that correct or clarify parts of a sentence (e.g., in terms of grammar/factual mistakes). In the analysis,
however, we also found a number of edits that involve paraphrases or more subtle differences in terms of
specificity/genericity. In these cases, it remains unclear in how far edits actually represent improvements.

This problem notably exists also in other work on textual revisions which aim to develop a compu-
tational model, including studies on Wikipedia (Bronner and Monz, 2012; Daxenberger and Gurevych,
2012; Faruqui et al., 2018) and ArgRewrite (Zhang and Litman, 2015). In particular, these studies ne-
glect two important aspects: First, they merely categorize edits by how they change a sentence (e.g.,
information deletion/addition, link creation/deletion), without specifying if or in how far the change rep-
resents an actual improvement. Secondly, they provide limited or no insight about how the content of a
revised sentence is semantically related to the content of the original sentence. Such information could
facilitate the understanding of why a change is perceived as a potential improvement. For instance, it
might be that a sentence is perceived as better because it uses more specific words (e.g., book/textbook,
bean/soybeans, work/homework) or that it fits better into the context in terms of textual cohesion.

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details:
creativecommons.org/licenses/by/4.0.
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How to Prepare for a Banking Job

Internships are a great way to get your feet wet and apply what you’ve learned in school to
the working world (. . . ) Employers will be glad to know that you made an effort to get some
experience before applying for the job.

Take advantage of your summers off from
school to do an internship. [original]

Take advantage of your summers off from
university to do an internship. [revised]

Many banks offer programs to undergraduate students.

Figure 1: Example of an original–revised sentence pair (shown in bold) from the text How to Prepare for
a Banking job, given the original context. The underlined term ‘school’, meant in a general sense, was
replaced during an edit by the term ‘university’, which is more specific in the given context.

With this paper, we aim to fill the forementioned gaps. First, we shed light on the semantic relation-
ships that hold between words in an original sentence and corresponding substitutions that appear in a
revised sentence. Second, we investigate the extent to which a revised sentence is actually perceived as
better. We approach these points by conducting three types of studies. In the first, we develop a super-
vised classifier that distinguishes the original and revised version of a sentence. We extend this classifier
to take into account the original context (illustrated in Figure 1), making it possible to assess in how far
factors related to cohesion are relevant in this distinction. In the second study, we collect annotations to
verify in how far a revised sentence is actually perceived as better than its original counterpart within the
original context. Finally, we compare model predictions and human annotations to analyze the extent to
which our model reflects improvements perceived by humans.

For our studies, we use a set of original–revised sentence pairs from wikiHowtoImprove (Anthonio
et al., 2020). The most frequent type of edit operation (substitution/deletion/insertion) in these sentence
pairs are substitutions and the most frequent word category affected by this operation are nouns. There-
fore, we focus our analysis on sentence pairs in which (1) one or multiple nouns are changed as a result of
an edit and (2) the length of the original and revised sentence remains identical. We argue that this sub-
set is well suited for computational and linguistic analyses as we can directly examine lexical-semantic
relationships that hold between substituted nouns as well as factors related to lexical cohesion in context.

In summary, the main contributions of this paper are:

• We examine the lexical-semantic relationship between the words in the original sentence and their
corresponding substitutions in the revised sentence through automatic labeling (§3).

• We develop a computational system that can identify the revised version of a sentence, while taking
into account contextual features (§4).

• We evaluate the extent to which a revised sentence is being perceived as being better by humans,
especially for those sentences that are not changed to correct the fluency of the text (§5).

• We compare human and machine performance for identifying the revised sentence (i.e., the sen-
tence that is presumably ‘better’) and explore how the performances vary in relation to the lexical-
semantic differences between the original and revised sentence (§6).

2 Related Work

There is only one related study using wikiHow (Anthonio et al., 2020), which we built upon (see Sec-
tion 3). Therefore, we discuss studies within two related lines of research in this section: studies on
revisions in Wikipedia (Section 2.1) and on revisions in persuasive texts (Section 2.2).
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2.1 Revisions in Wikipedia

Within NLP, various applications have been developed that build upon Wikipedia revision history. Exam-
ples are preposition error correction (Cahill et al., 2013), sentence compression (Nelken and Yamangil,
2008) simplification (Woodsend and Lapata, 2011; Yatskar et al., 2010), bias detection (Recasens et al.,
2013), sentence paraphrasing (Max and Wisniewski, 2010), textual entailment (Zanzotto and Pennac-
chiotti, 2010; Cabrio et al., 2012) and information retrieval (Aji et al., 2010; Nunes et al., 2011).

Revisions in Wikipedia have also been used to gain more theoretical knowledge on why and how texts
are edited collaboratively (Bronner and Monz, 2012; Liu and Ram, 2011; Yang et al., 2017; Daxenberger
and Gurevych, 2012; Faruqui et al., 2018). The majority of these studies categorize edits based on two
aspects. First, whether the edits are domain-specific or not. Second, whether the edits affect the meaning
of the text (text-base) or not (surface-changes). These edit categories were introduced in Faigley and
Witte (1981) and extended in Jones (2008). In general, text-base edits are further subcategorized by their
syntactic operation, such as deletion or modification. In this categorization, questions such as “why did
authors decide to change the sentence” and “what is the effect of the change” remain mostly unanswered.

To fill this theoretical gap, Yang et al. (2017) established a 13-category taxonomy of the semantic
intentions behind edits in Wikipedia, which includes categories such as fact update, point of view, verifi-
cation and refactoring. They additionally investigated how various types of edits predict the retention of
newcomers and changes in the article’s quality using a classification model.

Our work is similar to Yang et al. (2017) in that we shed more light on those sentences that have been
revised for other reasons than improving the fluency. In particular, we pinpoint the lexical-semantic rela-
tionship between nouns that have changed. Our study differs from previous work in that we investigate
the effectiveness of the edits through human annotations and that we work with instructional texts instead
of Wikipedia articles.

2.2 Revisions in Persuasive Texts

Another genre that has been used to examine revision histories are essays, such as those in the ArgRewrite
corpus (Zhang et al., 2017). Similar as in Wikipedia, there is a body of research available devoted to the
classification and analysis of edit types (Zhang and Litman, 2015; Zhang and Litman, 2016; Afrin and
Litman, 2018). A closely related study to ours is the one from Afrin and Litman (2018), which aimed to
develop a computational model that could predict, given the original and revised sentence, if the revised
sentence is better than the original. For this purpose, Afrin and Litman (2018) showed the annotators the
original and revised sentence, and asked them to label the revised sentence as Better or Not Better. The
authors developed a small set of guidelines that the annotators had to use, and relied on the annotators’
judgement for cases not covered by those guidelines. They let the annotators know the identity of the
revised and original sentence, which might have introduced an annotation bias. The annotators obtained
a slight agreement when using all results (κ = 0.201) and a fair agreement using the majority voting out
of 7 annotators (κ = 0.263), where κ is Fleiss’ Kappa (1971).

In the present work, we use a similar experimental set-up as Afrin and Litman (2018). We ask annotors
to decide, given the original and revised sentence, which one is better than the other. Yet, our study
differs in three aspects. First, we ask annotators to rely on their intuition to determine which sentence is
better instead of providing detailed guidelines. Second, we hide the identity of the revised and unrevised
sentence to prevent annotation bias. Third, we allow annotators to label either sentence as being better
or indicate that both are equally good.

Another closely related study using ArgRewrite (Zhang et al., 2017) is the work of Zhang and Litman
(2016). The authors propose to leverage context-based methods to enhance the classification of revision
purposes in the ArgRewrite corpus. This is motivated by the fact that prior work, such as the studies de-
scribed in Section 2.1, neglect contextual information or use relatively shallow features such as position.
The authors focus specifically on cohesion and coherence related features and therefore hypothesize that
the revision type affects the cohesion and coherence. The revision types considered here were introduced
in Zhang and Litman (2015), containing surface-edits such as conventions, organization and text-base
edits such as claims, warrant, evidence and general. To consider the cohesion and coherence, Zhang and
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Litman (2016) compute the similarity between the two sentences before and after the revised sentence.
The features significantly improved the performance of their classifier, compared to the baseline.

3 Data Description

As a starting point for our studies, we use wikiHowToImprove (Anthonio et al., 2020), a corpus of around
2.7 million sentences and their revisions. In the following, we use the term revised version and variable
Sr to refer to a new version of a sentence, resulting from one or multiple edits. For the first version of
a sentence, we use the term base version and variable Sb. In this work, we only use the base and last
revised version of a sentence, dropping all intermediate versions. We further restrict our studies on a
subset of the data by considering only pairwise versions of a sentence such that: (1) Sb and Sr have
the same number of tokens (N = 710 353), (2) at least one noun in Sb has been replaced by another
noun in Sr, i.e., noun-to-noun substitutions and (3) the only edits are noun-to-noun substitutions.1 This
subset contains 261 325 noun-to-noun substitutions, spread over 240 157 pairs. Since nouns can be used
to refer to entities, concepts, and events, the resulting set allows us to assess a broad range of lexical-
semantic phenomena that differ in Sb and Sr. Furthermore, we suspect that the usage of nouns in a given
sentence is related to the usage of nouns in the surrounding sentences, which makes it possible to study
the selected subset as cases where edits may have been triggered by context.

In practice, our studies focus on sentence-level edits, that is, we distinguish only the base and re-
vised sentence while keeping the context (i.e., the surrounding sentences) the same. Nonetheless, we
provide the context of the base sentence during annotation and we derive contextual features from it for
classification.

We characterize the pairs 〈Sb, Sr〉 by the lexical relationships that hold between the nouns{
N1

b , N
2
b ...N

n
b

}
in Sb and their corresponding substitutions

{
N1

r , N
2
r ...N

n
r

}
in Sr. Note that we can

easily identify the substitutions by their position in the sentence. For our characterization, we use the
Paraphrase Database (PPDB) (Pavlick et al., 2015), which contains 100 million paraphrases. Specifically,
each entry in the database contains a label that describes the entailment relationship between the phrases:
Equivalent (synonyms), Independent (not related), Exclusion (antonym), OtherRelated (related but not
by entailment), ReverseEntailment (hypernym → hyponym) and ForwardEntailment (hyponym→ hy-
pernym). The PPDB contains lexical, phrasal and syntactic paraphrases and contains different sizes. We
use the biggest set (XXXL, 7 million instances) of lexical paraphrases (single word to single word)2 to
label as many noun-to-noun substitutions as possible. We find that 55 945 out of 261 325 noun-to-noun
substitutions (21%) in the 240 157 pairs occur in the PPDB. The substitutions are distributed over 54 182
out of 240 157 pairs (23%), which indicates a fair coverage. The frequency distribution of the noun
modifications (base formatted in strikethrough/ revised underlined) is as follows:

• Independent (N = 24 373): ingredients/food, story/novel, days/time

• Equivalence (N = 14 308): percentage/%, kid/child, realisation/realization, maths/mathematics

• OtherRelated (N = 11 289): click/right-click, week/hour, hand/hands

• Forward entailment (N = 2771): woman/person, car/vehicle, army/military

• Reverse entailment (N = 2686): work/homework, plants/flowers, cat/kitten

• Exclusion (N = 518): right/left, high/low, outside/inside, red/blue.

In the remainder of this paper, we continue experimenting with the 54 182 pairs. We work with those
cases to restrict our analyses and experiments to substitutions containing valid English words that are
semantically related. Yet, this restriction does not eliminate all fluency-related errors, as some can be

1Despite our efforts, there are a approx. 15% cases in the dataset which have other changes than nouns. This can be caused
by POS-tagging errors or by other pre-processing errors. We manually identified such cases in a posthoc analysis and verified
that they had no noticable effect on the findings of our studies.

2http://paraphrase.org/#/download
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caused by wrong inflections (e.g., a students/student). We do not apply any additional filters as we aim
to cover as many interesting cases as possible in our study.

4 Classification Experiments

In this section, we describe a set of classification experiments that we conducted using the 54 182
pairs described in Section 3. For these experiments, we divide the data by article into a train (N =
44 147,∼80%), development (N = 5116,∼10%) and test set (N = 4919,∼10%).3 We address two
settings. Firstly, we train a classifier to identify for a sentence if it belongs to the class of revised versions.
We call this setting sentence in isolation. Our hypothesis is that revised versions can be distinguished
from base versions by modeling differences in noun choice within the sentence. Secondly, we develop
classifiers that also take the base context into account. That is, the classifier can make use of features
of the sentence to be classified as well as features derived from the sentences surrounding the sentence
in its base version. For this setting, we extract the sentences before and after Sb using a window of
five sentences. We denote the previous sentences as Cp and the following sentences as Cf . We use the
best classifier from the first setting as a baseline for the second setting, henceforth sentence in context,
and our hypothesis is that features derived from the sentence context can improve the identification of
revised versions by means of modeling factors such as cohesive ties, which are known to contribute to
the readability of a text (Mahlberg, 2006; Pitler and Nenkova, 2008).

4.1 Experimental Setup
Model. In both settings, we use a bidirectional long short-term memory network (BiLSTM) as our
classification model (Hochreiter and Schmidhuber, 1997; Schuster and Paliwal, 1997). The input layer
of the BiLSTM is initialized with pre-trained word embeddings. In the sentence in isolation setting,
we experiment with various types of embeddings, including FastText (Bojanowski et al., 2017), GloVe
(Pennington et al., 2014), BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019). Furthermore,
we use two stacked BiLSTMS and experiment with dimensions for each BiLSTM of 256 and 512. We
concatenate the last forward and backward hidden layers to obtain a final representation, which is fed
into a linear layer that outputs a single classification score. Between the stacked BiLSTMs and on the
final representation, we apply Dropout (Srivastava et al., 2014) with a probability of 0.5. At training
time, we use the labels 0 and 1 for Sb and Sr, respectively, and we compute the loss using Binary Cross
Entropy Loss4. At evaluation time, we use the sigmoid function to obtain and compare the output values
for the base and revised sentence.

For the sentence in context setting, we use the classifier with the best embeddings as our baseline. We
take context into account by concatenating context-based features to the final hidden representation of
the BiLSM. For normalization, we use batch normalization. Given the previous and following context
Cp and Cf , respectively, and a sentence S in its base or revised version (Sb vs. Sr), we experiment with
the following features:

• Discourse Markers: this feature represents a count of discourse markers in the tuple 〈Cp, S, Cf 〉.5

• Type–Token Ratio: the ratio of word types (i.e., unique tokens) by word tokens in the tuple
〈Cp, S, Cf 〉.

• Noun Overlap: the frequency of the base/revised noun(s) in the tuple 〈Cp, S, Cf 〉.

• Left Similarity: this feature measures the cosine similarity between the vector representations of
the last sentence in Cp and S. We compute each sentence-level representation as a component-wise
product over the GloVe embeddings of each word in the sentence.

3We use the article-based split released with wikiHowToImprove, which is available here: https://github.com/
irshadbhat/wikiHowToImprove/tree/master/data

4For computing the loss, we use the PyTorch implementation BCEWithLogitsLoss, which first projects the output of
the linear layer onto a range of [0, 1] by applying the sigmoid function (see https://pytorch.org/docs/stable/
nn.functional.html)

5Using the explicit connectives occurring in the Penn Discourse Treebank 2.0 (Prasad et al., 2008), as listed in the manual
https://www.seas.upenn.edu/~pdtb/PDTBAPI/pdtb-annotation-manual.pdf
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• Right Similarity: same as left similarity but using the first sentence of Cf .

We selected those features because they can be used, to a certain extent, as indicators of the cohesion and
coherence of a text (Crossley et al., 2016; Zhang and Litman, 2016). We suppose that the revised version
of a sentence may exhibit higher cohesion and coherence in context than the base version, and that the
features can capture this effect.

Training and evaluation. All models are trained on the train set and evaluated on the development
set after each epoch of training. The baseline is trained for a total of 30 epochs. All other models are
trained for at most 30 epochs, with early stopping applied if there is no improvement within 10 epochs.
On the test set, we only evaluate our baseline and the best models using context features. Regarding the
evaluation measure, we follow the same approach as Anthonio et al. (2020): Given a pair of sentence
versions 〈Sb, Sr〉, we treat the prediction of the classifier as correct if the score for the base sentence Sb
is smaller than the score for the revised sentence Sr, and report the average accuracy over all predictions.

4.2 Results
We show the results of the BiLSTM classifiers in Table 1. All classifiers achieve an overall accuracy
score between 65% and 70%. The best classifier in the sentence in isolation setting uses RoBERTa
embeddings and scores an accuracy of 68.26% and 66.33% on the development and test set, respectively.
Note that this score is much higher than the expected accuracy of a random classifier (50%), confirming
our hypothesis that the differences in noun choice can be modeled computationally. Two of our context-
based features lead to improvements over this baseline: the addition of the Type–Token Ratio scores an
accuracy of 69.33% on the development set and 66.64% on the test set; the addition of the Noun Overlap
feature yields an accuracy of 69.55% on the development set and 68.92% on the test set. This confirms
our hypothesis that features derived from context can improve the modeling of noun usage within a base
or revised sentence.

(a)
S in isolation (dev) h = 256 h = 512

GloVe embeddings 64.50 66.52
RoBERTa embeddings 68.26 68.00

(b)

S in context (dev) h = 256 h = 512

baseline + Discourse Markers 68.43 67.88
baseline + Type–Token Ratio 68.45 69.33
baseline + Noun Overlap 69.53 69.55
baseline + Left Similarity 67.69 67.68
baseline + Right Similarity 66.47 66.36

(c)

S in isolation (test)

best baseline 66.33

S in context (test)

baseline + Type–Token Ratio 66.64
baseline + Noun Overlap 68.92

Table 1: Accuracy results (in percentage) of (a) different baseline configurations, (b) context features on
the development set, and (c) the best models for sentence in isolation / in context on the test set.

5 Annotation Study

Previous work introduced the assumption that revisions represent improvements that can be made to a
base version of a sentence. In our classification experiments, we relied on the observation that the noun
choices in the base and revised version of a sentence can be distinguished systematically, thereby making
implicit use of this assumption as well. In this annotation experiment, we test in how far this assumption
actually reflects human judgements. For this purpose, we ask human annotators to identify which of
two versions of a sentence they perceive as better or if both versions are equally good in their opinion.
We present each pair of sentence versions within the base context Cp and Cf . Each pair consists of a
sentence in its base version and in its last revised version. For the annotation, we randomize the ordering
of both versions in order to hide the identity from the annotators. This procedure allows us to verify in
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Figure 2: A screenshot of a part of the interface that we used in the annotation study.

an unbiased way whether annotators indeed label the revised sentence as being better or not. In addition,
the annotation study provides us valuable insights regarding the difficulty of the task at hand.

5.1 Experimental Set-up

We use a subset of the dataset described in Section 3. In particular, we select a random sample of 499
base–revised sentence pairs from the development set that we used in the classification study. We show
a part of the interface that we used to collect the annotations in Figure 2. The interface displayed two
sentences to the annotators, Sentence A and Sentence B. When the annotators clicked on the button
“context”, the context of the sentence from the base version was displayed below the button. Thus, it was
optional for the annotators to consider the context. Since the purpose of the annotation study is to find
out which sentence is better, we find it acceptable if the annotators manage to perform the task without
looking at the context.

Furthermore, on the bottom of the interface, we posed the question: “Which sentence is better?". Using
the form, the annotators could answer: Sentence A, Equally Good, or Sentence B. For our analyses, we
convert indicated preferences to “revised is better” and “base is better” labels, based on the hidden
identity of a selected sentence. In addition to collecting individual annotations, the annotators had to
write a short report that explains how they made their decisions. We used this information in our analyses
to understand how the annotators define “better” and “equally good”.

We asked two annotators to participate in our study. Both are graduate students with expertise in
(computational) linguistics. We did not provide any instructions apart from the short info shown in
Figure 2, such that annotators can decide for themselves what makes a sentence better than the other. Of
course, keeping the task intuitive comes at a cost of additional disagreements in cases where intuitions
differ. However, the goal of the annotation study was merely to find out whether revisions are perceived
to be better than their previous versions, rather than providing a gold standard for further experiments.
Therefore, we decided to omit additional annotation steps, such as refining guidelines or adjudicating
cases of disagreement.

5.2 Results

Annotator 2

Annotator 1 Revised is better Equally good Base is better Total

Revised is better 153 65 7 225
Equally good 35 142 30 207
Base is better 16 32 19 67
Total 204 239 56 499

Table 2: Confusion Matrix comparing the labels given by Annotator 1 and 2.
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We present the confusion matrix of the two annotators in Table 2. It shows that the annotators marked
for most pairs the revised sentence as the better sentence. Since they labeled an almost similar number
of pairs as equally good, we conclude that the assumption "revised is better" holds depending on the
characteristics of the substitutions. Overall, the percentage of overlapping judgements is 62.93% (N =
314) and the chance-corrected agreement score is κ = 0.384 (Cohen, 1960). This is viewed as a fair
agreement (McHugh, 2012) and higher than the scores obtained in related studies (see Section 2).

Revised is better. As shown in Table 2, there are 153 pairs where both annotators marked the revised
sentence as better. Most of them (N = 88, 58%) contain a fluency-related error in the base sentence
resolved in the revised version. The errors include spelling errors, grammatical errors caused by wrong
inflection and incorrect usage of certain words, such as number/amount. There are two prominent charac-
teristics in the remaining cases. Firstly, a revised sentence is perceived as better when it contains a more
specific noun than the base sentence. This point was addressed by both annotators in their report. Most
noun modifications in these pairs are tagged with an Independent relation in the PPDB, because they lack
a direct hypernym/hyponym relationship (e.g., one/option, stuff/content, and things/ foods). This seems
to be a caveat of the labels provided by the PPDB. Secondly, the revised sentence is also perceived as
better when it contains a more commonly used noun or yields a more commonly used phrase than used
in the base sentence (e.g., cooking/baking powder, shadow/eyeshadow). For some of these instances,
common knowledge about the topic could also have played a role (e.g., Microsoft/Windows PC).

Equally Good. The annotators marked 142 sentence pairs as equally good. Most modifications were
synonym replacements (e.g., pictures/photos), most of which are tagged with the Equivalent relation in
the PPDB. In addition, we found 9 sentence pairs with antonym substitutions that were perceived as
equally good (e.g., left/right). Finally, a number of equally good sentences contain nouns that only vary
due to geographical spelling variations (N = 26, 18.31%). Both annotators mentioned this point in their
report.

Base is better. As shown in Table 2, there are only 19 pairs where both annotators marked the base
sentence as better. In four cases, the base sentence was clearly better because of a fluency-related error
introduced in the revised sentence. For the remaining cases, it is unclear why the annotators selected
the base sentence as better. Based on the low number of cases labeled as “base is better”, we conclude
that when the assumption ‘revised is better’ does not hold, it is likely that base and revised sentence are
equally good.

Disagreements. In 185 out of 499 pairs, the annotators provided different labels. As illustrated in
Table 2, a major set of disagreements is based on that Annotator 1 marked more cases as revised is better
(N = 225, 45.09%) and Annotator 2 labeled more pairs as equally good instead (N = 239, 47.90%).
One cause of this difference could be that Annotator 1 only selected the sentence with the more specific
noun as being better when this was appropriate within the topic using the title of the text. The pairs with
overlapping judgements do not rule out that Annotator 2 used a similar consideration, but contextual
aspects were not mentioned in her report. Other disagreements are caused by differences in common
knowledge, intuitions (e.g., selecting the pair with the most common word) and annotation inconsisten-
cies. The latter is particularly visible in the pairs labeled by one annotator as “base is better”. Finally,
some disagreements may have been caused by differences in usage of context, since viewing the context
was optional.

6 Analysis

In this section, we compare classifier predictions and human judgements. As discussed in Section 4,
our best classifier can distinguish the base and revised version of a sentence with an accuracy of close
to 70%. In Section 5, we have seen that annotators do not always perceive the revised sentence as the
better version of a sentence. Thus, we examine in how far classifier predictions overlap with human
judgements. For this analysis, we use the 314 pairs of sentences from the development set that were
annotated identically by both annotators. For a direct comparison, we post-process the model predictions
to also include a category “equally good”, which comprises all cases where the model’s output scores for
both versions of a sentence correspond to the same label (e.g., score(Sb) = 0.6 and score(Sr) = 0.7). In



1367

the remaining cases, we treat the model’s prediction as “revised is better” if score(Sr) >score(Sb) and
“base is better” if score(Sb) >score(Sr).

6.1 Results

Classifier

Annotators Revised is better Equally good Base is better Total

Revised is better 59 83 11 153
Equally good 59 59 24 142
Base is better 4 13 2 19
Total 122 155 37 314

Table 3: Confusion matrix for the cases where both annotators agreed compared to classifier predictions.

Correct predictions. The classifier’s correct identification of a revised sentence overlaps with the
annotator’s judgement that the revised sentence is better in 59 cases. In 46 (77,96%) of those pairs, a
fluency-related error in the base sentence was resolved in the revised sentence. These errors include typos
(N = 31), grammatical mistakes (N = 8), a combination of both (N = 2) and incorrect word usages
(N = 5). Most of the remaining pairs involved the PPDB relation Independent (N = 8, e.g., food/dish,
dirt/soil). Thus, the only improvements (according to the annotators) that are systematically identified
by the classifier are cases in which the revised sentence has a higher fluency. Among the 59 cases that the
classifier and annotators identified as equally good, we find that the noun substitutions frequently involve
the PPDB relations Equivalence (N = 19, e.g., bike/bicycle, kids/children, pictures/photos), Independent
(N = 18, e.g., drawings/pictures) and Exclusion (N = 4, e.g., left/right).

Incorrect predictions. There are 83 pairs where the annotators marked the revised sentence as being
better, while the classifier labeled both sentences as equally good. We noticed that a substantial number
of those pairs contained grammatical errors (N = 13) or mispelled words (N = 22) in the base sentence
which were solved in the revised sentence. Yet, the errors do not systematically differ from the correctly
identified pairs that we mentioned in the previous paragraph. Therefore, it is difficult to pinpoint why
those cases where incorrectly predicted by the model. In the remaining 48 cases, the disagreements
seem to be caused by factors related to linguistic specificity, commonality, and factual knowledge. For
instance, there are several cases where the annotators choose a sentence with the more specific noun as
being better (N = 7) or the sentence with the more commonly used word (N = 9). The former includes
noun substitutions not directly related by hypernymy, as addressed in Section 5. Consequently, these
cases can be hard to recognize for the classifier. Moreover, there are several cases where annotators
presumably used common sense or factual knowledge (N = 16) to determine the better sentence. Two
examples are: (1) dpi is dots per minutes/inch and (2) the user/viewer need to protect her/himself from
software threats. Finally, the annotators made effective use of neighbouring words in a sentence to
determine the correct noun, for example: "The NFPA says to remember the word/acronym PASS" or took
the context/topic into account if necessary.

7 Conclusion

In this work, we examined a subset of revisions in wikiHow, namely substitutions that involve lexically
related nouns, in order to assess the role of lexical semantics in annotating and modeling revisions.
In our computational experiment, we found that differences between base and revised sentence can be
modeled with high accuracy (> 65%) and that context-based features regarding cohesion and coherence
can further improve this result. In an annotation study, we verified that humans identify the revised
sentence as better when it improves the fluency. However, when pairs with noun substitutions are closely
related, such as by synonymy or antonymy, annotators tend to label both sentences as equally good. In
some cases, our annotators had to rely on their intuitions and background knowledge to select whether
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one sentence is better than another. Yet, we have also seen a high number of disagreements, showing that
the assumption “revised is better” does not always apply or is at best subjective in some cases.

In a final study, we observed that model predictions are largely in line with human annotations when
the revised sentence improves the fluency by correcting mispelled words. In contrast, we found our best
model to struggle with pairs that involve noun substitutions with high semantic relatedness and cases
where humans can resort to background knowledge or intuitions. In future work, we plan to extend our
model and analyses to take into account further information, including measures and features regarding
ambiguity and document structure.
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