




Figure 4: Visualization results of our model. It shows the relationships among various regions in the
given image, and those values on links are calculated through the semantic in contextual and visual
information. The higher the value, the thicker the line, the more important the relationship between the
two objects. Different objects are linked with different colored lines. For example, in (c) P3, the question
Q3 focuses on the bed in the given image. In the visual graph, we can see the object “bed” is connected
to “quilt” and “pillow” with two lines having the higher weights of 0.42 and 0.38, respectively.

based on semantics. In our work, the main system not only aligns the visual and textual contents, but
also constructs a visual relational features graph for effective inference. The B+VTA+VGAT(w/o ques-
tion) and the B+VTA+VGAT(w/o history) confirm the importance of question and history information
in VGAT module, respectively. In Table 2, B+VGAT and B+VTA improve the NDCG by about 2%
respectively. Meanwhile, the combined architecture (B+VGAT+VTA) raises the NDCG from 55.59% to
58.02%.

Our ablation experiments illustrate the necessity and rationality of each part in our model. The VTA
allows the visual representations to describe salient image regions with semantic perspective through
the alignment between textual and visual features. This module provides more underlying information
in image, thus the following module VGAT can make use of the information in both textual and visual
features to learn the relationships among all features in the given image. The VGAT makes the visual
features more fine-grained and correlational, and the structure of visual graph is helpful for answer
inference. From the experimental results, our method is superior to the baseline and those models based
on the graph method.

5 Conclusion

In this paper, we introduce Visual-Textual Alignment for Graph Inference (VTAGI) network based on
graph method for the visual dialog task. Rather than relying on the visual attention maps in prior works,
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Table 2: Ablation analysis of our proposed model. B means the Baseline Model. B+VGAT and B+VTA
indicate the usage of different modules. And their performances are implemented on VisDial v1.0.
Results highlighted in bold in the last column combine both two modules and it achieves the best perfor-
mance.

Model NDCG↑ MRR↑ R@1↑ R@5↑ R@10↑ Mean↓
B 55.59 63.03 49.03 80.40 89.83 4.18
B+VGAT 57.60 64.64 50.86 81.87 90.47 3.99
B+VTA 57.59 64.78 51.10 81.72 90.42 4.00
B+VTA+VGAT(w/o question) 57.46 64.20 50.97 81.96 90.51 4.13
B+VTA+VGAT(w/o history) 57.83 64.39 51.15 81.83 90.37 4.02
B+VGAT+VTA 58.02 64.90 51.18 82.00 90.69 3.97

VTAGI introduces alignment operation influenced by textual information and graph neural network ap-
proach. Our method is committed to obtaining more fine-grained and semantic-grounded image presen-
tations with the help of linguistic clues. We empirically validate our proposed model on VisDial v1.0
dataset. Results show that our method is able to find and utilize underlying information for dialog infer-
ence, demonstrating its effectiveness. In future work, we aim to integrate positional relationships among
visual objects by understanding the context.
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