@inproceedings{savchenko-etal-2020-ad,
title = "Ad Lingua: Text Classification Improves Symbolism Prediction in Image Advertisements",
author = "Savchenko, Andrey and
Alekseev, Anton and
Kwon, Sejeong and
Tutubalina, Elena and
Myasnikov, Evgeny and
Nikolenko, Sergey",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.171",
doi = "10.18653/v1/2020.coling-main.171",
pages = "1886--1892",
abstract = "Understanding image advertisements is a challenging task, often requiring non-literal interpretation. We argue that standard image-based predictions are insufficient for symbolism prediction. Following the intuition that texts and images are complementary in advertising, we introduce a multimodal ensemble of a state of the art image-based classifier, a classifier based on an object detection architecture, and a fine-tuned language model applied to texts extracted from ads by OCR. The resulting system establishes a new state of the art in symbolism prediction.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="savchenko-etal-2020-ad">
<titleInfo>
<title>Ad Lingua: Text Classification Improves Symbolism Prediction in Image Advertisements</title>
</titleInfo>
<name type="personal">
<namePart type="given">Andrey</namePart>
<namePart type="family">Savchenko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Anton</namePart>
<namePart type="family">Alekseev</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sejeong</namePart>
<namePart type="family">Kwon</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Elena</namePart>
<namePart type="family">Tutubalina</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Evgeny</namePart>
<namePart type="family">Myasnikov</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Sergey</namePart>
<namePart type="family">Nikolenko</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Understanding image advertisements is a challenging task, often requiring non-literal interpretation. We argue that standard image-based predictions are insufficient for symbolism prediction. Following the intuition that texts and images are complementary in advertising, we introduce a multimodal ensemble of a state of the art image-based classifier, a classifier based on an object detection architecture, and a fine-tuned language model applied to texts extracted from ads by OCR. The resulting system establishes a new state of the art in symbolism prediction.</abstract>
<identifier type="citekey">savchenko-etal-2020-ad</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.171</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.171</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>1886</start>
<end>1892</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Ad Lingua: Text Classification Improves Symbolism Prediction in Image Advertisements
%A Savchenko, Andrey
%A Alekseev, Anton
%A Kwon, Sejeong
%A Tutubalina, Elena
%A Myasnikov, Evgeny
%A Nikolenko, Sergey
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F savchenko-etal-2020-ad
%X Understanding image advertisements is a challenging task, often requiring non-literal interpretation. We argue that standard image-based predictions are insufficient for symbolism prediction. Following the intuition that texts and images are complementary in advertising, we introduce a multimodal ensemble of a state of the art image-based classifier, a classifier based on an object detection architecture, and a fine-tuned language model applied to texts extracted from ads by OCR. The resulting system establishes a new state of the art in symbolism prediction.
%R 10.18653/v1/2020.coling-main.171
%U https://aclanthology.org/2020.coling-main.171
%U https://doi.org/10.18653/v1/2020.coling-main.171
%P 1886-1892
Markdown (Informal)
[Ad Lingua: Text Classification Improves Symbolism Prediction in Image Advertisements](https://aclanthology.org/2020.coling-main.171) (Savchenko et al., COLING 2020)
ACL