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Abstract

Neural models have achieved great success on the task of machine reading comprehension
(MRC), which are typically trained on hard labels. We argue that hard labels limit the model
capability on generalization due to the label sparseness problem. In this paper, we propose a
robust training method for MRC models to address this problem. Our method consists of three
strategies, 1) label smoothing, 2) word overlapping, 3) distribution prediction. All of them help
to train models on soft labels. We validate our approach on the representative architecture -
ALBERT. Experimental results show that our method can greatly boost the baseline with 1%
improvement in average, and achieve state-of-the-art performance on NewsQA and QUOREF.

1 Introduction

Extractive reading comprehension is a challenging task in the field of natural language processing. Its ob-
jective is, as shown in Fig.1, to detect a fragment from a passage to answer a given question. Our model
needs to understand the context, locate the correct answer with exact word boundaries. Since multiple
questions can be derived for a passage with different fragments of the words as the corresponding an-
swers, the task is deemed as a benchmark for the deep understanding of human language, becoming a
hot research topic in recent years.

Usually, there exist multiple answers (or answer instances) for a given question in the extractive read-
ing comprehension scenario. These answers generally express the same meaning with different combi-
nation of words, or same expression but appear repeatedly in different locations, e.g. the multiple correct
answers shown in Fig.1. However, the application of the standard cross-entropy loss in training allows
only one correct answer to be considered, with other candidate answers ignored.

Paragraph: One of the first Norman mercenaries to serve as a Byzantine
general was Hervé in the 1050s. By then however, there were already
Norman mercenaries serving as far away as Trebizond and Georgia. . . .
Question: When did Hervé serve as a Byzantine general?
Answer1: 1050s
Answer2: in the 1050s

Figure 1: An example of multiple answer in extractive reading comprehension
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A variety of methods have been proposed to address this issue (Xiong et al., 2017; Hu et al., 2018; Su
et al., 2020). Most of them are focused on the training algorithm of MRC model, using reinforcement
learning or modifying loss function to generalize the word overlapping between a candidate answer and
the correct answer. Using this strategy, the training of model can be very complex, with word overlapping
in only one training sample into account, missing other Q&A patterns in the training set. In order to better
resolve this problem, we choose a focus on the training data perspective and propose soft label based data
augmentation without modifying the model structure and training algorithm. As a model-independent
data augmentation method, our methods permits a flexibility of using different methods to construct soft
label, and to design the framework of the model. Altogether we test 3 different methods to generate soft
labels, including word overlapping, on the state-of-the-art ALBERT model(Lan et al., 2020). All the
methods can boost ALBERT with notable improvement. In the best case, ALBERT can be improved
with about 2% by soft label based augmentation, proving our approach simple yet effective.

2 Soft Label based Data Augmentation

In this section, we will introduce our soft label based data augmentation methods. We investigate three
implementations of soft label: label smoothing, word overlapping, and distribution prediction. A brief
illustration and comparison of the three methods is shown in Fig.2.

0

0.25

0.5

0.75

1

(a) (b) (c) (d)

Figure 2: The target distributions of start position: a) one-hot; b) label smoothing; c) word overlapping;
d) distribution prediction

Label Smoothing Label smoothing was first proposed in the field of computer vision (Szegedy et al.,
2016). For a training sample (x, y), the probability of the correct category q(y|x) is defined as 1 and
other categories q(¬y|x) is as 0, and thereby there is a golden distribution q. The loss function of the
training sample is usually defined as the cross-entropy loss shown in the Eq.(1).

L = −
K∑
k=1

q(k|x) log(p(k|x)), (1)

where p(k|x) is the probability predicted by the model. Label smoothing mixes the original one-hot
distribution q and a distribution u that is independent of the training sample, to generate a new training
target q′ as shown in Eq.(2):

q′(k|x) = (1− ε)q(k|x) + εu(k), (2)

where ε is a weight to control the importance of q and u in the final distribution. u(k) is defined as a
uniform distribution 1

K , where K is the total number of categories. In this paper, K denotes the length
of the context in the label smoothing.

Word Overlapping Although label smoothing can weaken the golden answer, it fails to strengthen
other possible correct answers. Therefore, most of the existing researches soften the labels based on
word overlapping. The word overlapping is measured by token-level F1 score, and normalized with
Softmax function upon all possible answer spans as shown in Eq.(3). Then the start/end label distribution
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is calculated by marginalizing it with respect to all possible end/start positions:

q′s(s|x) =
∑
e

q′a(s, e|x) =
∑

e exp(F1((s, e), agold))∑
s

∑
e exp(F1((s, e), agold))

q′e(e|x) =
∑
s

q′a(s, e|x) =
∑

s exp(F1((s, e), agold))∑
e

∑
s exp(F1((s, e), agold))

(3)

Distribution Prediction Word overlapping is more enlightening, but this information is still obtained
from one training sample. Moreover, it may generate incorrect label distribution. In the previous exam-
ple, [the 1050s] and [1050s .] have higher F1 score compared with [in the 1050s], but obviously [in the
1050s] is more likely to be correct. Therefore, we build another kind of soft label, the target distribu-
tion q′ is predicted by another model following the idea of knowledge distillation(Hinton et al., 2015),
while some details are implemented differently. Instead of controlling the temperature, we propose
cross-decoding similar to cross-validation. First, randomly divide the data set T into many smaller sets
{T1, T2, . . . , Tn}, select {T2, T3, . . . , Tn} to train a model F1, then predict the probability of start/end
position ps, pe on the reserved sample x ∈ T1. Second, using the predicted p as new target distribution q′,
we construct a soften example (x, y′) on T1′. At the next iterations, we select different parts to decode,
until all samples in T have predicted label, i.e. T ′ = {(x, y′)|y′ = Fi(x)}.

Since F is trained on a large-scale data set {T2, T3, . . . , Tn}, the predicted distribution q′ can be con-
sidered as composed all the Q&A patterns in {T2, T3, . . . , Tn}. Thus, the potentially correct candidate
answers (the Q&A patterns that appeared in the training set, to be more precise) will have higher proba-
bility, which will become a more informative guidance for the MRC model.

3 Experiment

3.1 Experimental Settings
This paper uses SQuAD 2.0(Rajpurkar et al., 2018), NewsQA(Trischler et al., 2017), QUOREF(Dasigi
et al., 2019) in the experiments. NewsQA is gathered from CNN articles, and the others are from English
Wikipedia. But QUOREF is more focused on coreference resolution. SQuAD 2.0 and NewsQA both
contain unanswerable questions, while QUOREF doesn’t. The size of these datasets is shown in Table 1.

SQuAD 2.0 NewsQA QUOREF

paragraphs 19035 12107 3771
Q&A pairs 130319 102769 19345
Avg. Q&A pairs for a paragraph 6.85 8.49 5.13
Avg. len of paragraphs 116.6 616.2 326.0
Avg. len of answer spans 3.16 4.04 1.47
has answer Q&A pairs 86821 80901 19345
no answer Q&A pairs 43498 21868 0

Table 1: Statistics on SQuAD 2.0, NewsQA and QUOREF

Without loss of representativeness, we use the state-of-the-art ALBERT as a baseline. The model
used in the following experiments is ALBERT-xxlarge-v1, which performs best among all the ALBERT
models. We implement ALBERT by modifying HuggingFace’s Transformers toolkit(Wolf et al., 2019)
based on Pytorch framework(Paszke et al., 2019). The experiments on the three datasets all used a batch
size of 48. The optimizer is Adam(Kingma and Ba, 2015) with a learning rate of 0.00003 and linear
decay with about 20% warmup. The steps of fine-tuning varies with different datasets. For the smallest
QUOREF, we only perform 2400 steps of optimization. The step count is 5700 for SQuAD 2.0 and 8600
for NewsQA. Unlike Liu et al. (2019), we didn’t find Adam ε and Weight Decay have a significant effect
in the experiments, so other parameters remain the default.

For label smoothing, we use different label smoothing parameter ε on different datasets, 0.3 for
SQuAD 2.0 and 0.1 for others. For distribution prediction, we use an ensemble model as the model
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F for label prediction. The sub-models of the ensemble model are selected from top-performed runs
of ALBERT-xlarge and ALBERT-xxlarge with different hyper-parameters, for the three datasets we use
4, 6, 6 sub-models respectively. Each sub-model will predict a probability distribution of start/end po-
sition, we average the distribution and use the averaged result as the final probability of the ensemble
model. The ensemble model improved every metric of 1.0-2.0. We also tried to average the weights of
the sub-models, but as this approach can only be applied to models of same size and the improvement
after ensemble is not obvious, we didn’t apply this method.

3.2 Results and Analysis

In this section, we present the experimental results and make some analysis. The extractive reading
comprehension task is usually evaluated with two metrics: exact match(EM) and F1, both metrics are
the higher the better. EM checks whether the answer extracted by the model are exactly the same as the
correct answer. F1 does not require the predicted result to be exactly the same as the correct answer, it
measures the degree of word overlap at token level. All the results are shown in Table 2.

model soft label
SQuAD 2.0 NewsQA QUOREF
EM F1 EM F1 EM F1

human

not used

86.8 89.5 46.5 69.4 86.8 93.4
SpanBERT(Joshi et al., 2020) 85.7 88.7 - 73.6 - -
TASE-RoBERTa(Segal et al., 2019) - - - - 79.4 85.0
ALBERT(Lan et al., 2020) 87.4 90.2 - - - -

ALBERT(reproduced)

not used 86.9 90.0 63.7 74.0 85.5 89.4
label smoothing 86.9 90.1 64.0 74.0 86.3 90.4
word overlapping 87.2 90.2 64.1 74.5 86.8 90.9
distribution prediction 87.6 90.4 65.0 74.7 87.4 91.0

Table 2: Results of ALBERT-xxlarge with different data augmentation on SQuAD 2.0,NewsQA and
QUOREF datasets

From Table 2, we can find that the performance of the reproduced ALBERT has a small gap with the
original paper. To solve this issue, we tried over 50 hyper-parameter sets on ALBERT baseline including
the one shown in ALBERT paper, but none reached its reported results. Other PyTorch experiments
from the Transformers’ community discussion1 also reported similar results, so we believe the gap is
more likely to be related to the difference in implementation details between TensorFlow and PyTorch.

On the NewsQA dataset, the performance of reproduced ALBERT reached 63.7/74.0. According to
its leaderboard2, the state-of-the-art model on NewsQA is SpanBERT(Joshi et al., 2020), whose F1 score
is 73.6. ALBERT with no augmentation can reach 74.0 on F1, which proves that ALBERT is a strong
baseline model. QUOREF also has an official leaderboard3, in which the highest result reported is TASE-
RoBERTa(Segal et al., 2019), whose performance is 79.4/85.0, which is also significantly lower than the
ALBERT model we used.

After augmenting the soft label, we observe steady improvement on all metrics. Label smoothing has
positive effect on each dataset. The increase in SQuAD and NewsQA is relatively small, with an average
increase of about 0.2; on QUOREF, the increase is more obvious, with an average increase of about 0.9.
We think that the reason why the augmentation impacts the most on QUOREF is that the Q&A patterns in
QUOREF are different. The Q&A pairs in SQuAD and NewsQA cover a wide range of areas, including
time, entity, location and so on. However, the design of QUOREF is focused on pronoun resolution. The
answers are mostly named entities which repeat more frequently. Although they are same in expression,
they appear in different places in the context, which can be taken as multiple correct answers. The
performance improvement of word overlapping is greater than label smoothing, we think that’s because

1https://github.com/huggingface/transformers/issues?q=is%3Aissue+squad+albert+f1
2https://paperswithcode.com/sota/question-answering-on-newsqa
3https://leaderboard.allenai.org/quoref/submissions/public

https://github.com/huggingface/transformers/issues?q=is%3Aissue+squad+albert+f1
https://paperswithcode.com/sota/question-answering-on-newsqa
https://leaderboard.allenai.org/quoref/submissions/public
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that word overlapping introduces less noise than label smoothing in the target distribution. Using the
predicted distribution as additional soft label, the performance of the model can be further improved,
showing more significant effects on the three datasets. It proves that the distribution prediction does
provide more accurate labels than other methods, which can further enhance the model.

Finally, with soft label based data augmentation, ALBERT can be greatly improved, reaches state-of-
the-art on NewsQA and QUOREF and surpasses human on SQuAD 2.0 and NewsQA, which proves the
effectiveness of our data augmentation methods.

4 Conclusion

In this paper, we propose a simple yet effective data augmentation strategy based on soft label to capture
the multiple correct answers in extractive reading comprehension task. We investigate 3 methods to
generate soft label, i.e. label smoothing, word overlapping and distribution prediction, and validate them
by ALBERT on SQuAD 2.0, NewsQA and QUOREF datasets. The experimental results indicate that
all strategies are positive, with the predicted distribution top-performed with state-of-the-art results on
NewsQA and QUOREF and outperforms human on SQuAD 2.0 and NewsQA. Finally, we would suggest
that phenomenon of multiple answers in the MRC dataset is indeed widespread, and more effective
approaches are desired to address this issue.
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