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Abstract

End-to-end aspect-based sentiment analysis (EASA) consists of two sub-tasks: the first extracts the aspect
terms in a sentence and the second predicts the sentiment polarities for such terms. For EASA, compared
to pipeline and multi-task approaches, joint aspect extraction and sentiment analysis provides a one-step
solution to predict both aspect terms and their sentiment polarities through a single decoding process,
which avoid the mismatches in between the results of aspect terms and sentiment polarities, as well as error
propagation. Previous studies, especially recent ones, for this task focus on using powerful encoders (e.g.,
Bi-LSTM and BERT) to model contextual information from the input, with limited efforts paid to using
advanced neural architectures (such as attentions and graph convolutional networks) or leveraging extra
knowledge (such as syntactic information). To extend such efforts, in this paper, we propose directional
graph convolutional networks (D-GCN) to jointly perform aspect extraction and sentiment analysis with
encoding syntactic information, where dependency among words are integrated in our model to enhance
its ability of representing input sentences and help EASA accordingly. Experimental results on three
benchmark datasets demonstrate the effectiveness of our approach, where D-GCN achieves state-of-the-
art performance on all datasets.1

1 Introduction

End-to-end aspect-based sentiment analysis (EASA) aims to extract aspect terms in the text and predict their
sentiment polarities so as to understand targeted sentiment towards particular objects. For Example, in the sentence
“The ambiance is minimal but food is not phenomenal”, the aspect terms are “ambiance” and “food” and the
sentiment polarities towards them are positive and negative, respectively. In general, there are mainly three types
of approaches for this task, i.e., pipeline, multi-task, and joint-label approaches. Pipeline approaches (Mitchell et
al., 2013; Zhang et al., 2015; Hu et al., 2019) perform aspect extraction and sentiment analysis in a sequence, which
is not straightforward and suffers from error propagation among different steps; multi-task approaches (Mitchell
et al., 2013; Zhang et al., 2015; Ma et al., 2018; Luo et al., 2019; He et al., 2019; Hu et al., 2019) apply an
encoder to the input and use separate decoding process to extract aspects and predict their sentiments, where there
could be mismatches between the two decoding results. As a comparison, joint-label approaches (Mitchell et al.,
2013; Zhang et al., 2015; Li and Lu, 2017; Li et al., 2019a; Hu et al., 2019) extract aspect terms and predict
their sentiments simultaneously through a unified labeling scheme, which not only provides an one-step solution
to EASA, but also avoids the aforementioned problems in other two approaches.

In most cases, previous studies demonstrate that a good modeling of contextual information is effective in
improving EASA performance. However, these studies mainly rely on powerful encoders (e.g., Bi-LSTM, CNN,
BERT) (Zhang et al., 2015; Ma et al., 2018; Schmitt et al., 2018; Li et al., 2019a; Li et al., 2019b; Luo et al., 2019;
He et al., 2019; Hu et al., 2019) and pre-trained embedings (e.g., GloVe, word2vec, FastText) (Schmitt et al., 2018;
Li et al., 2019a) to learn contextual information, with limited effort paid to leveraging advanced architectures and
extra knowledge for this task. To extend such effort, graph convolutional networks (GCN) was proposed and shows
its effectiveness in conventional sentiment analysis (Zhang et al., 2019; Sun et al., 2019), as well as other tasks,
e.g., text classification (Kipf and Welling, 2016), neural machine translation (Bastings et al., 2017), semantic role
labeling (Marcheggiani and Titov, 2017), etc. Moreover, consider that discriminatively modeling the contextual
features of a given word according to their positional relations to the word is helpful in text representation learning
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This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http:

//creativecommons.org/licenses/by/4.0/.



273

Figure 1: The overall architecture of our approach, where the graph is built upon the dependency tree of an input
sentence, with all edges in the graph illustrated in the adjacency matrix. The red, blue, and orange colors illustrate
our modeling for contextual features in left, right, and self positional relations with a specific word, respectively.

(Zhang et al., 2017; Song et al., 2018; Shaw et al., 2018; Tian et al., 2020b), any encoder for EASA could also be
beneficial from adding such treatment to model the input text. Therefore, it is expected to enhance conventional
GCN with directional information for different parts of input, so that one can distinguish them and appropriately
model the contextual information for EASA.

In this paper, we propose directional graph convolutional networks (D-GCN) for EASA, which performs the
task following the sequence labeling paradigm and models dependency relations among words in the input with
an appropriate architecture. Specifically, for an input sentence, we firstly build the word relation graph upon
its auto-processed dependency trees; then, we apply a direction mechanism in GCN, where for each word, we
separately encode its associated contextual features (which are suggested by the graph) with respect to different
positional relations (i.e., on the left, right or self). To further distinguish the importance of different contextual
features, we also propose an attention mechanism, in which we assign different weights to such features that are
computed according to the comparisons among them, so as to emphasize important ones for EASA. To illustrate
the effectiveness of our approach, experiments are performed on three bechmark datasets, where the results confirm
that D-GCN is an appropriate model in leveraging dependency based word relations for EASA, with state-of-the-art
performance observed on all datasets.

2 The Approach
The overall architecture of our approach is illustrated in Figure 1, which follows the sequence labeling paradigm
for EASA, where an input sentence X = x1 · · ·xi · · ·xn is tagged by a corresponding joint label2 sequence
Ŷ = ŷ1 · · · ŷi · · · ŷn. For the D-GCN, there are L layers placed in between the context encoder (i.e., BERT) and
the output layer, where to feed them, an adjacency matrix (shown at the lower right side of Figure 1) representing
the graph is built on the dependency tree of the input sentence and an attention matrix (shown at the upper right
side of Figure 1) is applied to the edges in the graph to weight the contextual features associated with a specific
word, i.e., “soup”. In the following text, we firstly introduce normal GCN, then elaborate our proposed D-GCN,
and finally illustrate EASA labeling with D-GCN.

2.1 Graph Convolutional Networks
The representation of an input sentence always plays an important role in achieving good model performance when
it is fed to different natural language processing (NLP) tasks (Song et al., 2017; Babanejad et al., 2020). Contextual
features, such as n-grams and syntactic information, have been demonstrated to be highly useful to enhance text
representation and thus improve NLP model performance (Huang et al., 2007; Jiang et al., 2009; Wang et al., 2011;
Song and Xia, 2012; Song et al., 2012; Song and Xia, 2013; Dong et al., 2014; Miller et al., 2016; Bastings et al.,
2017; Marcheggiani and Titov, 2017; Yoon et al., 2018; Seyler et al., 2018; Kumar et al., 2018; Diao et al., 2019;
Sun et al., 2019; Zhang et al., 2019; Huang and Carley, 2019; Margatina et al., 2019; De Cao et al., 2019; Tian
et al., 2020a; Tian et al., 2020c; Tian et al., 2020d). In addition, it is also proved that GCN could be a powerful
model to capture context features suggested by the graph-alike signals, e.g., dependency tree, of an input sentence.

2A joint label contains two parts: aspect boundary identifier (i.e., B, I, E, O) and the sentiment mark (i.e., POS, NEG, NEU).
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Normal GCN models usually have L layers, and its input graph can be built upon the dependency tree of the input
sentence, where an edge is added to every two words, i.e., xi, and xj , if there exists a dependency relation between
them. In general, a 0-1 adjacency matrix A = {ai,j}n×n is used to represent the graph where ai,j = 1 if there is
an edge between xi and xj and ai,j = 0 otherwise. Based on A, for any xi in X , the l-th GCN layer takes the
output h(l−1)

i from the (l − 1)-th GCN layer3 and computes its output by

h
(l)
i = ReLU

 n∑
j=1

ai,j

(
W(l) · h(l−1)

j + b(l)
) (1)

where W(l) and b(l) are trainable matrix and bias for the l-th layer. Therefore, all contextual features associated
with xi (i.e., all xj satisfying ai,j = 1) are treated equally in normal GCN models.

2.2 Directional Graph Convolutional Networks
The motivation of D-GCN is to separately model contextual features that have different positional relationships
with their associated word, and further weight such features according to the comparison among them. Therefore,
following the same notations in normal GCN, in the l-th D-GCN layer, our approach to compute the output h(l)

i

for xi is formalized by

h
(l)
i = ReLU

 n∑
j=1

pi,j

(
W

(l)
dir · h

(l−1)
j + b(l)

) (2)

where W(l)
dir and pi,j (which correspond to W(l) and ai,j in Eq.(1), respecitively) show our improvement to normal

GCN through the direction modeling and attention mechanism. For the direction information, W(l)
dir encodes the

positional relationship of all xj with respect to xi and have three choices, i.e., W(l)
left, W

(l)
right, and W

(l)
self for

different i and j. For example, W(l)
dir = W

(l)
left if j < i. Then, instead of treading all contextual features equally

as that in Eq.(1), attention (through pi,j) is applied to the edge between xi and xj to weight different contextual
features. Specifically, pi,j is computed via

p
(l)
i,j =

ai,j · exp(h(l−1)
i · h(l−1)

j )∑n
j=1 ai,j · exp(h

(l−1)
i · h(l−1)

j )
(3)

where h
(l−1)
i · h(l−1)

j computes the interaction between xi and xj through inner product. Note that we also apply
ai,j from A to computing pi,j so that the attention for any two words can be easily ignored if there is not an edge
between them (ai,j = 0).

2.3 Tagging with Directional Graph Convolutional Networks

In our approach, we use BERT (Devlin et al., 2019) to encode the input X and obtain the hidden vector h(0)
i for

each xi. Then we feed h
(0)
i to L layers of D-GCN and obtain the corresponding output h(L)

i . Afterwards, we use
a trainable matrix W to align h

(L)
i to the output space by oi = W · h(L)

i . Finally, we apply a softmax decoder to
oi to predict the joint label ŷi for aspect extraction and sentiment analysis via

ŷi = argmax
exp(ot

i)∑|T |
t=1 exp(o

t
i)

(4)

where T denotes the label set and oti refers to the value at dimension t in oi.

3 Experiment
3.1 Settings
In our experiments, we use three benchmark datasets, including restaurant (REST) dataset from SemEval ABSA
challenges (Pontiki et al., 2014; Pontiki et al., 2015; Pontiki et al., 2016), laptop (LPTP) dataset from Pontiki et al.
(2014), and Twitter (TWTR) dataset from Mitchell et al. (2013). All these datasets contain the ground truth labels
of target aspect and their sentiment polarities. Following (Li et al., 2019a; Li et al., 2019b; He et al., 2019; Hu
et al., 2019), we only consider three sentiment polarities, i.e., positive, negative, and neutral, where all cases with
conflict label in REST and LPTP dataset are ignored. We report the statistics (the number of sentences, aspects
with respect to positive, neutral, and negative sentiment polarities) of the three datasets in Table 1. For TWTR
dataset, since there is no standard train-test split, we only report its total statistics and follow (Mitchell et al., 2013;

3The input to the first GCN layer is the hidden vector h(0)
i obtained from the context encoder, i.e., BERT.
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Dataset LPTP REST TWTR
Train Test Total Train Test Total Total

# Sentence 3,045 800 3,845 3,877 2,158 6,035 2,350
# Aspect 2,300 634 2,934 4,310 2,288 6,598 3,223

# POS 987 339 1,326 2,609 1,524 4,133 698
# NEG 861 130 991 1,035 501 1,536 271
# NEU 452 165 617 666 263 929 2,254

Table 1: The statistics of three benchmark datasets, where number of total sentences and aspect terms, as well as
the number of them with positive (POS), negative (NEG), and neutral (NEU) sentiment polarities are reported.

Models REST LPTP TWTR AVG.

BERT-Base 73.46 60.75 55.95 63.39
+ GAT 75.71 61.23 58.00 64.45
+ 1 D-GCN layer 76.04 65.75 60.21 67.33
+ 2 D-GCN layers 76.36 65.38 59.64 67.12
+ 3 D-GCN layers 76.75 66.61 60.66 68.00
+ 4 D-GCN layers 76.69 64.50 59.87 67.02

(a)

Models REST LPTP TWTR AVG.

BERT-Large 76.37 65.53 58.76 66.89
+ GAT 76.53 66.18 59.28 66.75
+ 1 D-GCN layer 77.81 68.53 62.26 69.53
+ 2 D-GCN layers 77.41 68.20 62.03 69.21
+ 3 D-GCN layers 77.78 68.32 62.12 69.40
+ 4 D-GCN layers 77.31 67.49 61.92 68.90

(b)

Table 2: Experimental results (F1 scores) of models with and without D-GCN, as well as a baseline using GAT,
on the test sets of three benchmark datasets. For all models, we try BERT-Base (a) and BERT-Large (b) encoders.
For our D-GCN models, we try different numbers (1 to 4) of D-GCN layers. An average score column (AVG.) is
added to demonstrate the overall performance of different models on the three datasets.

Zhang et al., 2015; Li et al., 2019a; Luo et al., 2019; Hu et al., 2019) to use ten-fold cross validation on it in our
experiments. We use an off-the-shelf system, i.e, Standard CoreNLP Toolkits (SCT)4 to obtain the dependency
tree for each sentence to construct its D-GCN graph, since SCT is a well-known NLP toolkit that has been used
in many previous studies (Huang and Carley, 2019; Sun et al., 2019; Tian et al., 2020a). We use uncased version
of BERT-Base and BERT-Large5 (Devlin et al., 2019) under their default settings. All trainable parameters in our
D-GCN model are randomly initialized. Following previous studies (Li et al., 2019a; Li et al., 2019b; Luo et al.,
2019; He et al., 2019; Hu et al., 2019), we evaluate all models by F1 score.

3.2 Results
In the main experiments, we run our models and baselines with and without D-GCN, and try different numbers
(i.e., from 1 to 4) of D-GCN layers. We also run a baseline that uses graph attention networks (GAT) (Veličković
et al., 2017) for references. Table 2 shows the results (F1 scores) on all datasets. There are several observations.
First, D-GCN works well with both base and large BERT, where consistent improvement is observed over the
baselines (including the GAT baseline) across datasets. Second, for models using BERT-Base, three layers of
D-GCN achieve the best result, where more or less layers cause inferior performance. One possible explanation
could be that although we only model the contextual features directly linked to a specific word in each D-GCN
layer, contextual information in larger range can be leveraged indirectly across layers when the number of D-GCN
layers increases, so that EASA performance is improved accordingly. However, further adding layer could lead to
over-fitting and introduce more noises and thus harm the EASA results. Different from BERT-Base, models using
BERT-Large require less D-GCN layers to achieve best performance because BERT-Large is more powerful in
encoding contextual information so that they rely less on the long range contextual information encoded by higher
layers of D-GCN. Moreover, we also compare our best model using BERT-base and BERT-large with previous
studies, where the results (F1 scores) are presented in Table 3. It is found that our models (especially with BERT-
Large) outperform all previous EASA studies. Particularly, although the pipeline approach shows a surprising
good performance over other previous studies, we prove that an appropriate model design could effectively take
full advantage of the joint approach.

3.3 Ablation Study
To explore the effect of the direction feature (DIR) and the attention mechanism (ATT) applied in our D-GCN,
we conduct an ablation study on our best model (BERT-Large) with 1 layer D-GCN, where either DIR or ATT is
ablated. The results (F1 scores) on different datasets are reported in Table 4, where the scores from baseline with
(ID: 4) and without (ID: 5) normal GCN are also presented. It is clearly indicated that the ablation of either DIR
and ATT (ID: 2, 3) hurts model performance, which suggests both parts contribute to improving the EASA task. In

4We use the version of 3.9.2 downloaded from https://stanfordnlp.github.io/CoreNLP/.
5We download different BERT models from https://github.com/huggingface/transformers.
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Models REST LPTP TWTR

Pipeline Hu et al. (2019) 74.92 68.06 57.69

Multi-task He et al. (2019) - 58.37 -
Luo et al. (2019) 72.78 60.35 51.37

Joint-label
Li et al. (2019a) 69.80 57.90 48.01
Li et al. (2019b) 73.24 61.12 -
Hu et al. (2019) 57.85 48.66 48.11

D-GCN (BERT-Base) 76.75 66.61 60.66
D-GCN (BERT-Large) 77.81 68.53 62.26

Table 3: Comparison of F1 scores between our best models (i.e.,
3 D-GCN layers for BERT-Base and 1 D-GCN layer for BERT-
Large) with previous studies on all three benchmark datasets.

ID SETTING REST LPTP TWTR
ATT DIR

1
√ √

77.81 68.53 62.26

2 ×
√

77.16 66.51 61.19
3

√
× 77.23 66.56 61.39

4 × × 72.91 55.87 52.42

5 Baseline 76.37 65.53 58.76

Table 4: Ablation results from our best model
(i.e., BERT-Large encoder with 1 D-GCN
layer). “DIR” and “ATT” denote direction mod-
eling and attention mechanism, respectively.

√

and × refers to whether a component is used.

Figure 2: An example sentence with its sentiment outputs from our D-GCN model (with BERT-Large encoder) (a)
and a reference model without the direction modeling (i.e., ID 3 in Table 4) (b). The predicted aspect term “Safari
browser” is highlighted in yellow. The correct and incorrect predicted sentiment polarities are presented in green
and red color. We visualize the weights assigned to the contextual features associated with “browser” on the arcs
(including the arc linking “browser” itself) between them, where thicker arc refers to higher weights.

addition, directly using normal GCN (ID: 4) leads to further inferior results compared to baseline (ID: 5) without
using it, which emphasizes the necessity of our design to weight different contextual features through D-GCN.

3.4 Case Study
To explore how the D-GCN model captures position information to improve model performance, we explore the
effect of direction modeling by comparing the output of our D-GCN models with BERT-Large encoder and a refer-
ence model without the direction modeling (i.e., ID 3 in Table 4). In Figure 2, we show an example sentence with
the outputs from two models, where both models correctly recognize the aspect term “Safari browser” (highlighted
in yellow color). In addition, our D-GCN model also correctly predict the sentiment polarity “positive” (in green),
while the reference model fails to do so (its output “neural” is highlighted in red). In the figure, for “browser”,
we visualize the weight assigned to each of its associated word (i.e., the word that connected to “browser” by an
dependency arc or “browser” itself) on the arc between them, where thicker arcs refer to higher weights. From Fig-
ure 2, it is found that the reference model (i.e., GCN + Att.) assigns the highest weight to “browser” itself, which
makes its associated contextual features fail to contribute to the process of predicting the joint label for “browser”.
On the contrary, our D-GCN approach that considers the directional information allows the attention mechanism to
assign higher weights to its contextual features, especially the context word “quick” that may provide useful cues
to predict a “positive” sentiment polarity compared to the reference model. To summarize, this example shows a
typical case that, by allowing the attention mechanism to assign appropriate weights to the contextual features, our
D-GCN model can leverage the positional relationship between a word and its contextual features to improve the
EASA task.

4 Conclusion
In this paper, we propose a joint approach for EASA with D-GCN, whose graph is built upon the dependency tree of
the input sentence obtained from off-the-shelf toolkits. The novelty of this work lies in the direction modeling and
attention applied in GCN, where in each D-GCN layer, for each word, we separately model its different contextual
features with considering their direction to the word, and weight these features according to the comparisons among
them. Experimental results on three widely used benchmark datasets illustrate the effectiveness of our approach,
with state-of-the-art performance achieved on all datasets. Further analysis confirms that both direction modeling
and attention mechanism are helpful for the task.
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