@inproceedings{shen-jin-2020-solving,
title = "Solving Math Word Problems with Multi-Encoders and Multi-Decoders",
author = "Shen, Yibin and
Jin, Cheqing",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.262",
doi = "10.18653/v1/2020.coling-main.262",
pages = "2924--2934",
abstract = "Math word problems solving remains a challenging task where potential semantic and mathematical logic need to be mined from natural language. Although previous researches employ the Seq2Seq technique to transform text descriptions into equation expressions, most of them achieve inferior performance due to insufficient consideration in the design of encoder and decoder. Specifically, these models only consider input/output objects as sequences, ignoring the important structural information contained in text descriptions and equation expressions. To overcome those defects, a model with multi-encoders and multi-decoders is proposed in this paper, which combines sequence-based encoder and graph-based encoder to enhance the representation of text descriptions, and generates different equation expressions via sequence-based decoder and tree-based decoder. Experimental results on the dataset Math23K show that our model outperforms existing state-of-the-art methods.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="shen-jin-2020-solving">
<titleInfo>
<title>Solving Math Word Problems with Multi-Encoders and Multi-Decoders</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yibin</namePart>
<namePart type="family">Shen</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Cheqing</namePart>
<namePart type="family">Jin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Math word problems solving remains a challenging task where potential semantic and mathematical logic need to be mined from natural language. Although previous researches employ the Seq2Seq technique to transform text descriptions into equation expressions, most of them achieve inferior performance due to insufficient consideration in the design of encoder and decoder. Specifically, these models only consider input/output objects as sequences, ignoring the important structural information contained in text descriptions and equation expressions. To overcome those defects, a model with multi-encoders and multi-decoders is proposed in this paper, which combines sequence-based encoder and graph-based encoder to enhance the representation of text descriptions, and generates different equation expressions via sequence-based decoder and tree-based decoder. Experimental results on the dataset Math23K show that our model outperforms existing state-of-the-art methods.</abstract>
<identifier type="citekey">shen-jin-2020-solving</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.262</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.262</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>2924</start>
<end>2934</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Solving Math Word Problems with Multi-Encoders and Multi-Decoders
%A Shen, Yibin
%A Jin, Cheqing
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F shen-jin-2020-solving
%X Math word problems solving remains a challenging task where potential semantic and mathematical logic need to be mined from natural language. Although previous researches employ the Seq2Seq technique to transform text descriptions into equation expressions, most of them achieve inferior performance due to insufficient consideration in the design of encoder and decoder. Specifically, these models only consider input/output objects as sequences, ignoring the important structural information contained in text descriptions and equation expressions. To overcome those defects, a model with multi-encoders and multi-decoders is proposed in this paper, which combines sequence-based encoder and graph-based encoder to enhance the representation of text descriptions, and generates different equation expressions via sequence-based decoder and tree-based decoder. Experimental results on the dataset Math23K show that our model outperforms existing state-of-the-art methods.
%R 10.18653/v1/2020.coling-main.262
%U https://aclanthology.org/2020.coling-main.262
%U https://doi.org/10.18653/v1/2020.coling-main.262
%P 2924-2934
Markdown (Informal)
[Solving Math Word Problems with Multi-Encoders and Multi-Decoders](https://aclanthology.org/2020.coling-main.262) (Shen & Jin, COLING 2020)
ACL