@inproceedings{zeng-etal-2020-event,
title = "Event Coreference Resolution with their Paraphrases and Argument-aware Embeddings",
author = "Zeng, Yutao and
Jin, Xiaolong and
Guan, Saiping and
Guo, Jiafeng and
Cheng, Xueqi",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.275",
doi = "10.18653/v1/2020.coling-main.275",
pages = "3084--3094",
abstract = "Event coreference resolution aims to classify all event mentions that refer to the same real-world event into the same group, which is necessary to information aggregation and many downstream applications. To resolve event coreference, existing methods usually calculate the similarities between event mentions and between specific kinds of event arguments. However, they fail to accurately identify paraphrase relations between events and may suffer from error propagation while extracting event components (i.e., event mentions and their arguments). Therefore, we propose a new model based on Event-specific Paraphrases and Argument-aware Semantic Embeddings, thus called EPASE, for event coreference resolution. EPASE recognizes deep paraphrase relations in an event-specific context of sentences and can cover event paraphrases of more situations, bringing about a better generalization. Additionally, the embeddings of argument roles are encoded into event embedding without relying on a fixed number and type of arguments, which results in the better scalability of EPASE. Experiments on both within- and cross-document event coreference demonstrate its consistent and significant superiority compared to existing methods.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="zeng-etal-2020-event">
<titleInfo>
<title>Event Coreference Resolution with their Paraphrases and Argument-aware Embeddings</title>
</titleInfo>
<name type="personal">
<namePart type="given">Yutao</namePart>
<namePart type="family">Zeng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xiaolong</namePart>
<namePart type="family">Jin</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Saiping</namePart>
<namePart type="family">Guan</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiafeng</namePart>
<namePart type="family">Guo</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xueqi</namePart>
<namePart type="family">Cheng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Event coreference resolution aims to classify all event mentions that refer to the same real-world event into the same group, which is necessary to information aggregation and many downstream applications. To resolve event coreference, existing methods usually calculate the similarities between event mentions and between specific kinds of event arguments. However, they fail to accurately identify paraphrase relations between events and may suffer from error propagation while extracting event components (i.e., event mentions and their arguments). Therefore, we propose a new model based on Event-specific Paraphrases and Argument-aware Semantic Embeddings, thus called EPASE, for event coreference resolution. EPASE recognizes deep paraphrase relations in an event-specific context of sentences and can cover event paraphrases of more situations, bringing about a better generalization. Additionally, the embeddings of argument roles are encoded into event embedding without relying on a fixed number and type of arguments, which results in the better scalability of EPASE. Experiments on both within- and cross-document event coreference demonstrate its consistent and significant superiority compared to existing methods.</abstract>
<identifier type="citekey">zeng-etal-2020-event</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.275</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.275</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>3084</start>
<end>3094</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Event Coreference Resolution with their Paraphrases and Argument-aware Embeddings
%A Zeng, Yutao
%A Jin, Xiaolong
%A Guan, Saiping
%A Guo, Jiafeng
%A Cheng, Xueqi
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F zeng-etal-2020-event
%X Event coreference resolution aims to classify all event mentions that refer to the same real-world event into the same group, which is necessary to information aggregation and many downstream applications. To resolve event coreference, existing methods usually calculate the similarities between event mentions and between specific kinds of event arguments. However, they fail to accurately identify paraphrase relations between events and may suffer from error propagation while extracting event components (i.e., event mentions and their arguments). Therefore, we propose a new model based on Event-specific Paraphrases and Argument-aware Semantic Embeddings, thus called EPASE, for event coreference resolution. EPASE recognizes deep paraphrase relations in an event-specific context of sentences and can cover event paraphrases of more situations, bringing about a better generalization. Additionally, the embeddings of argument roles are encoded into event embedding without relying on a fixed number and type of arguments, which results in the better scalability of EPASE. Experiments on both within- and cross-document event coreference demonstrate its consistent and significant superiority compared to existing methods.
%R 10.18653/v1/2020.coling-main.275
%U https://aclanthology.org/2020.coling-main.275
%U https://doi.org/10.18653/v1/2020.coling-main.275
%P 3084-3094
Markdown (Informal)
[Event Coreference Resolution with their Paraphrases and Argument-aware Embeddings](https://aclanthology.org/2020.coling-main.275) (Zeng et al., COLING 2020)
ACL