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Abstract

Event coreference resolution aims to classify all event mentions that refer to the same real-world
event into the same group, which is necessary to information aggregation and many downstream
applications. To resolve event coreference, existing methods usually calculate the similarities
between event mentions and between specific kinds of event arguments. However, they fail to
accurately identify paraphrase relations between events and may suffer from error propagation
while extracting event components (i.e., event mentions and their arguments). Therefore, we pro-
pose a new model based on Event-specific Paraphrases and Argument-aware Semantic Embed-
dings, thus called EPASE, for event coreference resolution. EPASE recognizes deep paraphrase
relations in an event-specific context of sentences and can cover event paraphrases of more situa-
tions, bringing about a better generalization. Additionally, the embeddings of argument roles are
encoded into event embedding without relying on a fixed number and type of arguments, which
results in the better scalability of EPASE. Experiments on both within- and cross-document event
coreference demonstrate its consistent and significant superiority compared to existing methods.

1 Introduction

Event coreference resolution clusters event mentions referring to the same real-world event, no matter
within a single document (denoted as WD) or across multiple documents (denoted as CD). It is vital for
information aggregation and can further benefit many downstream natural language processing applica-
tions, including contradiction detection (De Marneffe et al., 2008), text mining (Ferracane et al., 2016)
and question answering (Khashabi et al., 2018; Welbl et al., 2018).

Usually, each event consists of an event mention and a few arguments. Take the following two sen-
tences as an example, where event mentions are marked in bold, and the subscripts indicates their IDs:

(1) Perennial party girl Tara Reid checkedm1 herself intom1 Promises Treatment Center, her repre-
sentative toldm2 The Washington Post.

(2) The original trainwreck Tara Reid’s publicist confirmedm3 that the actress Reid was admitted
intom4 Promises Treatment Center in Los Angeles and it was her decisionm5.

these five event mentions in the sentences can be clustered into two sets {m1,m4, m5} and {m2, m3}.
Each set constitutes an event coreference chain and the event mentions in it are all coreferential.

An intuitive and effective way to resolve event coreference is to calculate the similarities between event
mentions and between their arguments. Many methods (Yang et al., 2015; Choubey and Huang, 2017;
Barhom et al., 2019) have adopted these similarities as important features to train classifiers. Essentially,
this means is to identify the paraphrase relation between events (i.e., one event can be viewed as a
paraphrase of another event) by modeling the similarity between event components (i.e., event mentions
and their arguments). However, these methods use these event components separately and ignore deep
event paraphrase relations within events’ context.

In addition, when incorporating event arguments to resolve event coreference, previous methods (Lee
et al., 2012; Yang et al., 2015; Choubey and Huang, 2017; Barhom et al., 2019) first extract semantic

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.



3085

roles through Semantic Role Labeling (SRL), match them with entity annotations in the corpus to obtain
simplified arguments, and finally fill argument slots to get the specified types of arguments. Due to
the inconsistency between the output of the SRL system and the entity annotations, they often suffer
from error propagation. For instance, in the output of the SRL system, the ARG0 (agent) of confirmed
(m3) is The original trainwreck Tara Reid’s publicist, but there are two annotated entities Tara Reid and
publicist. It’s hard to distinguish which is the right ARG0 using simple matching rules. Besides, a fixed
number and type of arguments will also cause poor scalability.

To address these limitations, we propose an Event-specific Paraphrases and Argument-aware Seman-
tic Embeddings enhanced model (EPASE) for within- and cross-document event coreference resolution.
Here, the event-specific paraphrase, we mean a special kind of paraphrase relation between sentences,
only focuses on certain events. For example, when focusing on events told (m2) and confirmed (m3),
the above two sentences are paraphrase pairs, but they are not when looking at them from the perspec-
tives of events checked into (m1) and confirmed (m3). In EPASE, a paraphrase identification module
and a special token [COREF] are employed to help the model capture the event-specific paraphrase rela-
tions. At the same time, we obtain the argument-aware semantic embeddings of events by incorporating
the embeddings of semantic role labels with the token embeddings and aggregating these information
through a semantic attention mechanism. Finally, we integrate these two aspects to get the coreference
score between events. In general, the contributions of this paper can be summarized as follows:

• We identify event-specific paraphrase relations between sentences by capturing the semantic infor-
mation of events within the complete sentences, other than incorporating only event components
separately. To the best of our knowledge, we are the first to introduce the event-specific paraphrase
relations to resolve event coreference.

• We further combine the embeddings of argument roles with the sequence token embeddings to
obtain event embeddings within the context. Compared to existing methods, our method requires
fewer steps and annotations but achieves better scalability.

• Experiments demonstrate the significant superiority of EPASE, and the event-specific paraphrase
features and the argument-aware semantic embeddings are both beneficial to resolving event coref-
erence.

2 Related works

According to the development period and adopted methods, we roughly divide the previous works on
event coreference resolution into three categories.

2.1 Feature or template based methods
Early studies (Bejan and Harabagiu, 2010; Lee et al., 2012; Cybulska and Vossen, 2015b) usually adopt
lexical features (e.g. string matching features), argument features (e.g. argument alignment features)
and basic semantic features (e.g. word embedding similarity and WordNet synonyms) to calculate the
similarity between different event mentions. At the same time, some manual rules and event templates
are used to check the compatibility between events.

Among them, Cybulska and Vossen (2015b) proposed a model based on event templates. They first
set up 5 slots (Action, Time, Location, Human-Participants, Non-Human-Participants), then filled the
slots by extracting the five elements of events, and used these slots as the representation of events.
The documents were represented as “Bag of Events”. Then the documents were clustered, and the
compatibility of event slots was checked to determine whether the events in each cluster are coreferential.

2.2 Neural network based methods
Recent studies base on the neural networks to encode event mentions, context, and event arguments to
obtain the embeddings of events (Choubey and Huang, 2017; Kenyon-Dean et al., 2018).

For example, Kenyon Dean et al. (2018) proposed an event representation learning model based
on neural network. They introduced the clustering-oriented regularization term to impel the model to
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produce similar embeddings for coreferential events, and dissimilar embeddings otherwise. Their model
does not include the preprocessing step of document clustering but encodes the document information
as part of event mention embeddings to avoid coreference linking between events in different document
clusters.

2.3 Information enhanced methods

More recent studies try to introduce more information through joint modeling or data argumentation
methods. The state-of-the-art models (Barhom et al., 2019; Meged et al., 2020) in the past two years
have adopted such a strategy to improve the performance of event coreference resolution.

Barhom et al. (2019) presented a method that jointly modeled entity coreference and event corefer-
ence. They first obtained the predicate-argument structures through a SRL system, and then heuristically
found the relation between entities and events by matching the semantic roles with entity annotations
and event annotations. After that, they encoded the embedding of related entities (events) into the event
(entity) embedding. Finally, the pairwise entity coreference scorer and event coreference scorer were
trained alternately and iteratively based on these embeddings.

Based on the Barhom’s method (2019), Meged et al. (2020) introduced Chirps resources (Shwartz et
al., 2017) in a distant supervision manner to enhance event coreference resolution. Chirps is a project
focusing on predicate (verbal event mention1) paraphrase. It collects news headlines on tweets, annotates
the sentences with semantic roles, and then evaluates the confidence of predicate paraphrase through
heuristic methods. Meged et al. first re-ranked the paraphrased predicates in Chirps by using the event
coreference annotations in ECB+ corpus (Cybulska and Vossen, 2014) as supervision signals. Then,
Chirps provides predicate paraphrase pairs to the joint method to improve event coreference resolution.

Differing from the method proposed by Meged et al. (2020), our approach models the event-specific
paraphrases between sentences and can capture the deep relations between events.

3 The EPASE Model

Given a document collection D, where each document di consists of a series of sentences {s0, s1, ...sn}.
In each sentence, there may be zero or more events. The event coreference resolution task is to find
all the events that refer to the same real-world event with the given event in the document set. In our
EPASE model, we formulate it as a pairwise similarity identification task. The overall architecture
of our model is shown in Figure 1. We first conduct document clustering to narrow the search scope
and construct pairwise samples for model training by sampling. Then we employ the event paraphrase
identification module to model the event-specific paraphrase similarity vector Spara and the semantic
similarity evaluation module to model the semantic similarity vector Ssem between events. The final
similarity vector S is calculated by Ssem and Spara.
3.1 Data preparation

For data preparation, we first conduct document clustering to narrow the search scope and construct
pairwise samples for model training by sampling

3.1.1 Document clustering
Our model starts with the preprocessing step of document clustering, which clusters the input documents
D into a set of document clusters C. It has proved to be a very effective means to reduce the search
space and mitigate errors (Lee et al., 2012; Barhom et al., 2019), especially when we need to handle both
within- and cross-document event coreference.

Following Barhom et al. (2019), we convert the documents into tf-idf vectors after removing stop
words and retaining the unigrams, bigrams, and trigrams. Then, we adopt the K-Means algorithm to
cluster the documents into different clusters. To improve efficiency and effectiveness, in the subsequent
procedures, we only identify the coreference link between events that co-occur in the same document
cluster.

1Note that, event mentions can be verbs, nouns, pronouns and even adjectives.
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Figure 1: The overall architecture of the EPASE model.

3.1.2 Mention-pair sampling
After obtaining the document clusters, we pair the event mentions in the same document clusters to con-
struct the mention-pair set. For each document cluster Cp ∈ C, all event mentions appearing in it consti-
tute the mention set Ep, then the mention-pair set can be expressed asMP = {〈mip,mjp, r〉|mip,mjp ∈
Ep; i 6= j}, where r represents whether mip and mjp are coreferential event mentions.

It’s easy to find that the coreference relations between event mentions are sparse, and the sparsity is
more serious when the number of documents in the document cluster increases. Thus, we apply sampling
strategies to alleviate it. For positive samples inMP , we set an oversampling rate λo(λo ≥ 1), and for
negative samples, we conduct a downsampling procedure with sampling probability λd(λd ≤ 1). The
sampling strategies are only conducted on the training data.

The final data pair set DP consists of a series of sample pairs. For each sample 〈mi, si,mj , sj , r〉,
〈mi,mj , r〉∈MP and si, sj are the corresponding sentences containing mi, mj respectively.

3.2 Event-specific paraphrase identification

An event consists of one event mention and some event arguments, and the coreferential events are differ-
ent statements for it. Currently, many methods (Lee et al., 2012; Cybulska and Vossen, 2015b) construct
features through complex data preprocessing steps to capture the paraphrase features as much as pos-
sible, such as event argument matching, event mention matching, and event mention lemma matching.
These steps can intuitively find some common information between events. However, they are very time-
consuming and requires the careful artificial construction of the corresponding features. Also, it is easy
to ignore the context information by simply using the matching rules, resulting in mis-coreference of
events with the same event mentions or event arguments.

Therefore, a better way is to keep the event mention and event arguments in the sentences and conduct
paraphrase identification between sentences. However, since there are often multiple events in a sentence,
it is difficult to identify the paraphrase relation without distinguishing which event is the focused one.
Here, we try to capture the event-specific paraphrase relation between sentences, which focuses on only
the event-specific context. That is, when we focus on the specific event or analyze the sentence from the
perspective of a specific event, other events or semantic components can be ignored.
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To this end, we need to force the model to pay attention to specific events in the sentence pair. Here,
we add a special token before and after the event mentions to emphasize the events, and then use the
attention mechanism to gather the information of different semantic components in the sentence.

Detailedly, for each sample 〈mi, si,mj , sj , r〉, we use BERT (Devlin et al., 2019) as a sentence-
pair (si, sj) encoder to capture paraphrase feature information, and gather important semantic structure
information through the self-attention mechanism. To be in line with BERT , we add [CLS] and [SEP] to
connect two sentences. To force the model to pay attention to the event-specific semantic structure, we
adopt a straightforward strategy that encapsulates the event mentions in sentences with the special token
[COREF]2. For example, the event pair (strike, hits) and the sentence pair (“A powerful quake strikes the
Indonesian province of Aceh”, “Dozens injured as the earthquake hits Aceh”) will be transformed into:

• [CLS] A powerful quake [COREF] strikes [COREF] the Indonesian province of Aceh [SEP] Dozens
injured as the earthquake [COREF] hits [COREF] Aceh [SEP]

Suppose the input sequence T consists of a series of tokens, where T = {t0, t1, ...tn}. Following
Devlin et al. (2019), we use the token embedding of [CLS], i.e., t0 as the representation of the sentence
pair. Then we pass it through a fully connected layer, followed by a non-linear activation operation, and
another fully-connected layer to obtain the binary event-specific paraphrase vector Spara(mi,mj) of mi

and mj , i.e.,

Spara(mi,mj) = Wp1 [tanh (Wp0 · B(t0) + bp0)] + bp1, (1)

where B is the BERT embedding; Wp0 and Wp1 are the weight matrix of the two fully-connected layers,
respectively; bp0 and bp1 are the biases of these two layers.

3.3 Semantic similarity evaluation

It’s hard for the paraphrase identification module to recognize all event arguments without semantic
information. Therefore, we also explicitly introduce argument role information into the model to provide
a complement to the paraphrase feature, especially when the event arguments in the sentence is far from
the event mentions or does not match exactly between event pairs.

Specifically, we first carry out SRL on the input two sentences. Then, we combine the token em-
bedding obtained from the BERT encoder with argument label embedding and obtain a joint embedding
through a semantic integration module. At last, we conduct pooling strategies to get the event embedding
ei, ej , and calculate the event semantic similarity based on them.

3.3.1 Semantic role labeling
We identify semantic roles of events using a SRL system. The output result for each predicate is a label
sequence which consists of semantic role labels of each token. In this paper, we use the same semantic
role annotations as the PropBank (Palmer et al., 2005). In addition, we add two labels O and M, O stands
for the empty role token and M stands for the event mention token. Usually, there are multiple events in
a sentence, so there will be multiple semantic role sequences. For each event, we choose the sequence in
which the predicate matches the event mentions.

Previous methods (Lee et al., 2012; Choubey and Huang, 2017; Barhom et al., 2019) usually match
the output of the SRL system with the annotated entities in the dataset to obtain four kinds of event argu-
ments, i.e., ARG0 (agent), ARG1 (patient), ARGM-TIM (time), ARGM-LOC (location). This not only
requires additional entity annotations, but also limits the realization of an end-to-end event coreference
resolution system. Besides, the matching method often introduces errors due to complex sentence struc-
tures, resulting in error propagation. Therefore, we remove the matching process and regard the semantic
role labels as embeddings by using a lookup table to map these labels to vectors R = {r0, r1, ..., rm}.

Since current SRL systems can only handle verb predicates, event mentions such as nouns and pro-
nouns cannot be handled well. Lee et al. (2012) used a heuristic means that considering the possessor of

2For discontinuous event mentions, we add [COREF] before the first word and after the last word.
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a nominal event as its ARG0 (e.g., the AMD’s deal) to cover nominal events. But we find it will introduce
errors and noise for model training. Therefore, for events that are not covered3 by SRL system, we leave
all its argument roles empty. In future work, we will train a SRL model that can handle nouns, pronouns
and adjectives to handle this situation.

3.3.2 Semantic integration
For the two sentences si and sj in each sample, we add a [CLS] token at the beginning of each sen-
tence to aggregate the overall sentence information. Each sentence consists of a series of vectors
s = {v0,v1, ...,vn}, where vk = [B(tk)||rk] (k = 0, 1, . . . , n) is the concatenation of token embedding
from BERT encoder and semantic role embedding. We use a multi-layer multi-head transformer encoder
(Vaswani et al., 2017) to encode the semantic information into the new token embedding z, i.e.,

hl
k = Transformerl(vk) (l = 1, 2, . . . , n), (2)

zk = Wh · [h1
k||h2

k...||hn
k ], (3)

where [·||·] represents the concatenation operation, Transformerl denotes the l-th head of the transformer
encoder, Wh is the weight matrix of head concatenation operation and n is the number of heads.

Then, the embedding of [CLS], i.e., z0, is adopted as the sentence embedding g. And we employ
average pooling to obtain the event mention embedding x and the event embedding e:

x =
1

q − p+ 1

q∑
k=p

zk, (4)

eu = tanh(Wu · [gu||xu] + bu) u ∈ i, j, (5)

where p, q are the indices of the first token and last token; Wu and bu are the weight matrix and the bias
term, respectively.

In addition, we enrich our model with some pairwise binary features Φ(mi,mj), indicating whether
the two event mentions have the same head lemma word and the same event type4.

Based on them, we can get the binary semantic similarity vector Ssem(mi,mj) of events mi and mj :

Ssem(mi,mj) = Wsem · [ei||ej ||ei ◦ ej ||Φ(mi,mj)] + bsem, (6)

where ◦ is the element-wise multiplication operation; Wsem and bsem are the weight matrix and bias,
respectively.

3.4 Training and inference
Based on paraphrase similarity vector Spara and semantic similarity vector Ssem of mi and mj , the final
binary similarity vector S and the coreference probability yij are computed as follows:

S(mi,mj) = WS · [Spara(mi,mj)||Ssem(mi,mj)] + bS , (7)

yij = softmax(S(mi,mj)[1]) =
exp(S(mi,mj)[1])∑

k∈{0,1} exp(S(mi,mj)[k])
, (8)

where WS and bS are the corresponding weight matrix and bias, the u[k] denotes the k-th dimension of
the vector u.

During training, we apply dropout before the last fully-connected layer of obtaining Ssem, Spara and
set the same dropout ratio in the transformer encoder layers. The training object is to minimize the binary
cross-entropy loss L:

L = − 1

N

N∑
n=1

[
ynlogŷn + (1− yn) log (1− ŷn)

]
. (9)

During inference, mi,mj will be considered as coreferential events only when both the coreference
probabilities yij and yji are greater than the score threshold δ.

3According to our statistics, the results of SRL system can cover about 60% of event mentions.
4The head lemma word can be obtained from lemmatization tools and the event type can be obtained from the dataset.
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4 Experiments

4.1 Experimental setup
Our experiments are conducted on the ECB+ corpus (Cybulska and Vossen, 2014), which is the largest
dataset containing WD and CD event coreference annotations. It consists of documents accumulated
from Google News. These documents are clustered into different topics according to the seminal events.
In the ECB+ corpus, the salient events and entities are annotated, but the roles of the entities in the
corresponding events are not annotated.

Following the setup of Cybulska and Vossen (2015a) and Barhom et al. (2019), we use a subset of
the annotations that has been manually reviewed and checked for correctness. In this setting, singleton
events (events that have no coreferential events) are included, and the 43 topics in the ECB+ corpus are
divided into a training set, a dev set, and a test set. Table 1 presents the statistics of the data.

Train Dev Test Total
# Topics 25 8 10 43
# Documents 574 196 206 976
# Sentences 1037 346 457 1840
# Event mentions 3808 1245 1780 6833
# Event chains 1527 409 805 2741
# Avg. chain length 2.49 3.04 2.21 2.49
# Avg. WD chain length 1.23 1.26 1.27 1.24
# Avg. CD chain length 2.44 2.99 2.17 2.44

Table 1: The statistics of ECB+ corpus.

We evaluate the event coreference performance on four widely used coreference resolution metrics:
MUC (Vilain et al., 1995), B3 (Bagga and Baldwin, 1998), CEAFe (Luo, 2005), and CoNLL F1 (Prad-
han et al., 2014), which is the average of MUC, B3 and CEAFe.

4.2 Baselines
We adopt three categories of baselines, i.e., feature or template based methods: Cluster+Lemma and
CV (Cybulska and Vossen, 2015b); neural network based methods: KCP (Kenyon-Dean et al., 2018)
and Cluster+KCP (Barhom et al., 2019); information enhanced ones: Joint (Barhom et al., 2019) and
Joint+Chirps (Meged et al., 2020). They are all representative or state-of-the-art. Among them, Clus-
ter+Lemma and Cluster+KCP are variants of the lemma rule (Lee et al., 2012) and KCP, respectively:

Cluster+Lemma: a heuristic method that includes document clustering and lemma matching. We
first cluster the documents, using the method stated in Section 3.1, and then group event mentions in the
same document cluster according to whether they have the same head lemma.

Cluster+KCP: a model that adds the document clustering module to the KCP baseline, proposed
by Barhom et al. (2019). We make comparison with this model to distinguish the effect of document
clustering from the other parts of our model.

Besides, we add another baseline BERTpara, which use BERT to identify common sentence para-
phrases. We compare our model with it to reflect the necessity of being event-specific while conducting
paraphrase identification.

Since Yang et al. (2015) and Choubey and Huang (2017) adopted a different experimental setup,
which had been criticized by Barhom et al. (2019) for using the full corpus with known annotation errors
and ignoring singleton events, we do not apply them as baselines following Barhom et al. (2019).

4.3 Implement details
In our experiments, we use AllenNLP (Gardner et al., 2018) to conduct SRL on input sentences, use
spaCy (Honnibal and Montani, 2017) to obtain the head lemma of event mentions. For document clus-
tering, we use K-Means algorithm, and set K to 20 following Barhom et al. (2019). For data sampling,
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we set λo to 1, and the downsampling probability λd to 0.5. For the hyperparameters in our model, we
set the dimension of token embedding to 768 (the same dimension size as BERT-base (Devlin et al.,
2019)), the dimension of semantic role embedding to 384 (half of the dimension size of token embed-
ding), and the total dimension of binary features to 50. For the semantic integration module, we use a
two-layer multi-head transformer, set the number of attention heads to 4, the hidden layer dimension of
the feed-forward network to 2048, and use GeLU (Hendrycks and Gimpel, 2016) as the activation func-
tion. During training, we set the learning rate to 2e-5, the dropout ratio to 0.1, the maximum sentence
pair length to 200, and use the AdamW (Loshchilov and Hutter, 2017) optimizer with a minibatch size
of 24. During inference, the threshold δ is set to 0.5.

4.4 Experimental results

Model MUC B3 CEAFe CoNLL
P R F1 P R F1 P R F1 Avg F1

BERTpara 53.4 23.7 32.8 81.9 51.0 62.8 46.9 78.4 58.7 51.4
Cluster+Lemma 79.9 76.5 78.1 85.0 71.7 77.8 71.7 75.5 73.6 76.5
CV 75 71 73 78 71 74 - - 64 73
KCP 71 67 69 67 71 69 67 71 69 69
Cluster+KCP 79.3 68.4 73.4 87.2 67.2 75.9 66.4 77.4 71.5 73.6
Joint 84.5 77.6 80.9 85.1 76.1 80.3 73.8 81.0 77.3 79.5
Joint+Chirps† 84.7 78.7 81.6 85.9 75.9 80.5 74.8 81.1 77.8 80.0
EPASE 85.6 89.3 87.5 77.6 89.7 83.2 84.5 80.1 82.3 84.3

Table 2: Within- and cross-document event coreference results on the ECB+ test set († indicates that the
method uses external data).

Table 2 presents the performance of the models for within- and cross-document event coreference.
Overall, our model shows a consistent improvement and achieves the best results on all the metrics.
Compared with the state-of-the-art Joint+Chirps baseline, our EPASE model achieves a 4.3% improve-
ment on CoNLL F1, even though Joint+Chirps additionally uses entity annotation information and the
data resource from Chirps (Shwartz et al., 2017). The most significant improvement of our model comes
from the recall of MUC and B3, which increases the scores by 10.6% and 13.8%, respectively.

In addition, we also conduct experiments on a special part of the data samples (within-document) (See
Table 3). We don’t need document clustering when evaluating models on within-document coreference
resolution, so the Cluster+KCP is equal to the KCP baseline.

In Table 3, the MUC scores of all models are significantly lower than those of B3 and CEAFe. This
is because when the cross-document coreference links are cut off, most of the events become singleton
event (as shown in Table 1, the average length of WD coreference chains is 1.24). B3 and CEAFe will
be greatly influenced by these singleton nodes. In this case, MUC is more suitable for comparing the
performances between models. We can observe that our model achieves an improvement of 8.3% on
MUC F1 as well as a 4.2% improvement on CoNLL F1 when compared with the Joint baseline.

Model MUC B3 CEAFe CoNLL
P R F1 P R F1 P R F1 Avg F1

BERTpara 18.6 15.4 16.8 84.5 81.6 83.1 77.9 81.6 79.7 59.9
Cluster+Lemma 78.8 50.4 61.5 96.8 88.4 92.4 84.7 92.9 88.6 80.8
KCP 57 69 63 90 94 92 90 86 88 81
Joint 74 65.8 69.7 94.2 91.5 92.8 88.5 91.2 89.8 84.1
EPASE 82.1 74.3 78.0 95.6 93.8 94.7 91.1 93.4 92.3 88.3

Table 3: Within-document event coreference results on the ECB+ test set.
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These results reconfirm that, compared to using discrete manual features and argument slots with a
fixed number to obtain event embedding, introducing paraphrase features and integrating argument label
embeddings into event embeddings will greatly improve the performance of event coreference resolution.

To further study the necessity of each component of the proposed model, we ablate a component from
the full model to validate its contributions each time. The results are demonstrated in Table 4. -Spara,
-Ssem and -bin refer to the removal of the paraphrase similarity component, the removal of the semantic
similarity component, and the removal the pairwise binary features. We can observe that all components
contribute to the performance improvement, among which both the paraphrase similarity component and
the semantic similarity component play a great role in improving the experimental results. It is worth
mentioning that when only Ssem is used, our method still surpasses the existing SOTA model by 2.7%
on CoNLL F1, which shows that the method of incorporating the argument role embedding with word
embedding, and then obtaining the event expression through the attention mechanism can get better event
embedding, thus lead to better coreference results.

Model MUC B3 CEAFe CoNLL ∆

All 87.5 83.2 82.3 84.3
-Ssem 86.3 80.8 79.1 82.1 -2.2
-Spara 86.7 81.1 80.4 82.7 -1.6
-bin 87.4 83.0 81.9 84.1 -0.2

Table 4: Ablation study for event coreference.

4.5 Analysis of event-specific paraphrase

To figure out whether the EPASE model actually models the event-specific paraphrase features, we select
a typical sample from the test set and illustrate the heat map of the attention weights of the tokens in this
event pair in Figure 2.

From this figure, we can observe that after adding [COREF] to emphasize the event mentions, the
model will use the [COREF] tokens to gather event information in another sentence, including the men-
tion and arguments of another event. Meanwhile, little attention will be paid to the irrelevant events (the
injured event in this example).

We also draw a chart Figure 2(b) to display how event pairs information is aggregated to the [CLS]
token, which is used as event-specific paraphrase embedding to calculate the paraphrase similarity. The
thickness of the line reflects the attention score. We can find that most of the information flowing to [CLS]
comes from [COREF], context, and event arguments. And we notice that it’s hard for the paraphrase
component to capture all arguments (quake and earthquake in this sample) without introducing more
semantic information.

Therefore, the proposed model EPASE captures the event-specific paraphrase features and is thus of
high generalization ability.

5 Conclusions and future work

We proposed EPASE to resolve event coreference, which integrates event-specific paraphrases and
argument-aware semantic embeddings. Compared with obtaining event embeddings within single sen-
tences and calculating event similarity based on them, EPASE identifies event-specific paraphrases be-
tween sentences to capture the correlation between two events, which is more in line with human cog-
nition. Meanwhile, to make up for the situation that not all the event arguments can be recognized in
the paraphrase identification, we further introduce the embeddings of argument roles to obtain argument-
aware semantic embedding of events. Thus, EPASE is of high generalization ability and scalability.
Experimental results manifest the remarkable superiority of EPASE.

In the future, we will strengthen our SRL component to handle event mentions which are pronouns,
nouns, and adjectives. Also, we will further reduce the reliance on the event mention annotations and
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(a) (b)

Figure 2: Visualization of attention scores between tokens

construct an end-to-end event coreference resolution framework.
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