@inproceedings{le-ferrand-etal-2020-enabling,
title = "Enabling Interactive Transcription in an Indigenous Community",
author = "Le Ferrand, Eric and
Bird, Steven and
Besacier, Laurent",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.303",
doi = "10.18653/v1/2020.coling-main.303",
pages = "3422--3428",
abstract = "We propose a novel transcription workflow which combines spoken term detection and human-in-the-loop, together with a pilot experiment. This work is grounded in an almost zero-resource scenario where only a few terms have so far been identified, involving two endangered languages. We show that in the early stages of transcription, when the available data is insufficient to train a robust ASR system, it is possible to take advantage of the transcription of a small number of isolated words in order to bootstrap the transcription of a speech collection.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="le-ferrand-etal-2020-enabling">
<titleInfo>
<title>Enabling Interactive Transcription in an Indigenous Community</title>
</titleInfo>
<name type="personal">
<namePart type="given">Eric</namePart>
<namePart type="family">Le Ferrand</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Steven</namePart>
<namePart type="family">Bird</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Laurent</namePart>
<namePart type="family">Besacier</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>We propose a novel transcription workflow which combines spoken term detection and human-in-the-loop, together with a pilot experiment. This work is grounded in an almost zero-resource scenario where only a few terms have so far been identified, involving two endangered languages. We show that in the early stages of transcription, when the available data is insufficient to train a robust ASR system, it is possible to take advantage of the transcription of a small number of isolated words in order to bootstrap the transcription of a speech collection.</abstract>
<identifier type="citekey">le-ferrand-etal-2020-enabling</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.303</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.303</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>3422</start>
<end>3428</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Enabling Interactive Transcription in an Indigenous Community
%A Le Ferrand, Eric
%A Bird, Steven
%A Besacier, Laurent
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F le-ferrand-etal-2020-enabling
%X We propose a novel transcription workflow which combines spoken term detection and human-in-the-loop, together with a pilot experiment. This work is grounded in an almost zero-resource scenario where only a few terms have so far been identified, involving two endangered languages. We show that in the early stages of transcription, when the available data is insufficient to train a robust ASR system, it is possible to take advantage of the transcription of a small number of isolated words in order to bootstrap the transcription of a speech collection.
%R 10.18653/v1/2020.coling-main.303
%U https://aclanthology.org/2020.coling-main.303
%U https://doi.org/10.18653/v1/2020.coling-main.303
%P 3422-3428
Markdown (Informal)
[Enabling Interactive Transcription in an Indigenous Community](https://aclanthology.org/2020.coling-main.303) (Le Ferrand et al., COLING 2020)
ACL