@inproceedings{long-etal-2020-synonym,
title = "Synonym Knowledge Enhanced Reader for {C}hinese Idiom Reading Comprehension",
author = "Long, Siyu and
Wang, Ran and
Tao, Kun and
Zeng, Jiali and
Dai, Xinyu",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.329",
doi = "10.18653/v1/2020.coling-main.329",
pages = "3684--3695",
abstract = "Machine reading comprehension (MRC) is the task that asks a machine to answer questions based on a given context. For Chinese MRC, due to the non-literal and non-compositional semantic characteristics, Chinese idioms pose unique challenges for machines to understand. Previous studies tend to treat idioms separately without fully exploiting the relationship among them. In this paper, we first define the concept of literal meaning coverage to measure the consistency between semantics and literal meanings for Chinese idioms. With the definition, we prove that the literal meanings of many idioms are far from their semantics, and we also verify that the synonymic relationship can mitigate this inconsistency, which would be beneficial for idiom comprehension. Furthermore, to fully utilize the synonymic relationship, we propose the synonym knowledge enhanced reader. Specifically, for each idiom, we first construct a synonym graph according to the annotations from the high-quality synonym dictionary or the cosine similarity between the pre-trained idiom embeddings and then incorporate the graph attention network and gate mechanism to encode the graph. Experimental results on ChID, a large-scale Chinese idiom reading comprehension dataset, show that our model achieves state-of-the-art performance.",
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="long-etal-2020-synonym">
<titleInfo>
<title>Synonym Knowledge Enhanced Reader for Chinese Idiom Reading Comprehension</title>
</titleInfo>
<name type="personal">
<namePart type="given">Siyu</namePart>
<namePart type="family">Long</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Ran</namePart>
<namePart type="family">Wang</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kun</namePart>
<namePart type="family">Tao</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jiali</namePart>
<namePart type="family">Zeng</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Xinyu</namePart>
<namePart type="family">Dai</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Machine reading comprehension (MRC) is the task that asks a machine to answer questions based on a given context. For Chinese MRC, due to the non-literal and non-compositional semantic characteristics, Chinese idioms pose unique challenges for machines to understand. Previous studies tend to treat idioms separately without fully exploiting the relationship among them. In this paper, we first define the concept of literal meaning coverage to measure the consistency between semantics and literal meanings for Chinese idioms. With the definition, we prove that the literal meanings of many idioms are far from their semantics, and we also verify that the synonymic relationship can mitigate this inconsistency, which would be beneficial for idiom comprehension. Furthermore, to fully utilize the synonymic relationship, we propose the synonym knowledge enhanced reader. Specifically, for each idiom, we first construct a synonym graph according to the annotations from the high-quality synonym dictionary or the cosine similarity between the pre-trained idiom embeddings and then incorporate the graph attention network and gate mechanism to encode the graph. Experimental results on ChID, a large-scale Chinese idiom reading comprehension dataset, show that our model achieves state-of-the-art performance.</abstract>
<identifier type="citekey">long-etal-2020-synonym</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.329</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.329</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>3684</start>
<end>3695</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Synonym Knowledge Enhanced Reader for Chinese Idiom Reading Comprehension
%A Long, Siyu
%A Wang, Ran
%A Tao, Kun
%A Zeng, Jiali
%A Dai, Xinyu
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F long-etal-2020-synonym
%X Machine reading comprehension (MRC) is the task that asks a machine to answer questions based on a given context. For Chinese MRC, due to the non-literal and non-compositional semantic characteristics, Chinese idioms pose unique challenges for machines to understand. Previous studies tend to treat idioms separately without fully exploiting the relationship among them. In this paper, we first define the concept of literal meaning coverage to measure the consistency between semantics and literal meanings for Chinese idioms. With the definition, we prove that the literal meanings of many idioms are far from their semantics, and we also verify that the synonymic relationship can mitigate this inconsistency, which would be beneficial for idiom comprehension. Furthermore, to fully utilize the synonymic relationship, we propose the synonym knowledge enhanced reader. Specifically, for each idiom, we first construct a synonym graph according to the annotations from the high-quality synonym dictionary or the cosine similarity between the pre-trained idiom embeddings and then incorporate the graph attention network and gate mechanism to encode the graph. Experimental results on ChID, a large-scale Chinese idiom reading comprehension dataset, show that our model achieves state-of-the-art performance.
%R 10.18653/v1/2020.coling-main.329
%U https://aclanthology.org/2020.coling-main.329
%U https://doi.org/10.18653/v1/2020.coling-main.329
%P 3684-3695
Markdown (Informal)
[Synonym Knowledge Enhanced Reader for Chinese Idiom Reading Comprehension](https://aclanthology.org/2020.coling-main.329) (Long et al., COLING 2020)
ACL