@inproceedings{lothritz-etal-2020-evaluating,
title = "Evaluating Pretrained Transformer-based Models on the Task of Fine-Grained Named Entity Recognition",
author = "Lothritz, Cedric and
Allix, Kevin and
Veiber, Lisa and
Bissyand{\'e}, Tegawend{\'e} F. and
Klein, Jacques",
editor = "Scott, Donia and
Bel, Nuria and
Zong, Chengqing",
booktitle = "Proceedings of the 28th International Conference on Computational Linguistics",
month = dec,
year = "2020",
address = "Barcelona, Spain (Online)",
publisher = "International Committee on Computational Linguistics",
url = "https://aclanthology.org/2020.coling-main.334/",
doi = "10.18653/v1/2020.coling-main.334",
pages = "3750--3760",
abstract = "Named Entity Recognition (NER) is a fundamental Natural Language Processing (NLP) task and has remained an active research field. In recent years, transformer models and more specifically the BERT model developed at Google revolutionised the field of NLP. While the performance of transformer-based approaches such as BERT has been studied for NER, there has not yet been a study for the fine-grained Named Entity Recognition (FG-NER) task. In this paper, we compare three transformer-based models (BERT, RoBERTa, and XLNet) to two non-transformer-based models (CRF and BiLSTM-CNN-CRF). Furthermore, we apply each model to a multitude of distinct domains. We find that transformer-based models incrementally outperform the studied non-transformer-based models in most domains with respect to the F1 score. Furthermore, we find that the choice of domains significantly influenced the performance regardless of the respective data size or the model chosen."
}
<?xml version="1.0" encoding="UTF-8"?>
<modsCollection xmlns="http://www.loc.gov/mods/v3">
<mods ID="lothritz-etal-2020-evaluating">
<titleInfo>
<title>Evaluating Pretrained Transformer-based Models on the Task of Fine-Grained Named Entity Recognition</title>
</titleInfo>
<name type="personal">
<namePart type="given">Cedric</namePart>
<namePart type="family">Lothritz</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Kevin</namePart>
<namePart type="family">Allix</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Lisa</namePart>
<namePart type="family">Veiber</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Tegawendé</namePart>
<namePart type="given">F</namePart>
<namePart type="family">Bissyandé</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Jacques</namePart>
<namePart type="family">Klein</namePart>
<role>
<roleTerm authority="marcrelator" type="text">author</roleTerm>
</role>
</name>
<originInfo>
<dateIssued>2020-12</dateIssued>
</originInfo>
<typeOfResource>text</typeOfResource>
<relatedItem type="host">
<titleInfo>
<title>Proceedings of the 28th International Conference on Computational Linguistics</title>
</titleInfo>
<name type="personal">
<namePart type="given">Donia</namePart>
<namePart type="family">Scott</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Nuria</namePart>
<namePart type="family">Bel</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<name type="personal">
<namePart type="given">Chengqing</namePart>
<namePart type="family">Zong</namePart>
<role>
<roleTerm authority="marcrelator" type="text">editor</roleTerm>
</role>
</name>
<originInfo>
<publisher>International Committee on Computational Linguistics</publisher>
<place>
<placeTerm type="text">Barcelona, Spain (Online)</placeTerm>
</place>
</originInfo>
<genre authority="marcgt">conference publication</genre>
</relatedItem>
<abstract>Named Entity Recognition (NER) is a fundamental Natural Language Processing (NLP) task and has remained an active research field. In recent years, transformer models and more specifically the BERT model developed at Google revolutionised the field of NLP. While the performance of transformer-based approaches such as BERT has been studied for NER, there has not yet been a study for the fine-grained Named Entity Recognition (FG-NER) task. In this paper, we compare three transformer-based models (BERT, RoBERTa, and XLNet) to two non-transformer-based models (CRF and BiLSTM-CNN-CRF). Furthermore, we apply each model to a multitude of distinct domains. We find that transformer-based models incrementally outperform the studied non-transformer-based models in most domains with respect to the F1 score. Furthermore, we find that the choice of domains significantly influenced the performance regardless of the respective data size or the model chosen.</abstract>
<identifier type="citekey">lothritz-etal-2020-evaluating</identifier>
<identifier type="doi">10.18653/v1/2020.coling-main.334</identifier>
<location>
<url>https://aclanthology.org/2020.coling-main.334/</url>
</location>
<part>
<date>2020-12</date>
<extent unit="page">
<start>3750</start>
<end>3760</end>
</extent>
</part>
</mods>
</modsCollection>
%0 Conference Proceedings
%T Evaluating Pretrained Transformer-based Models on the Task of Fine-Grained Named Entity Recognition
%A Lothritz, Cedric
%A Allix, Kevin
%A Veiber, Lisa
%A Bissyandé, Tegawendé F.
%A Klein, Jacques
%Y Scott, Donia
%Y Bel, Nuria
%Y Zong, Chengqing
%S Proceedings of the 28th International Conference on Computational Linguistics
%D 2020
%8 December
%I International Committee on Computational Linguistics
%C Barcelona, Spain (Online)
%F lothritz-etal-2020-evaluating
%X Named Entity Recognition (NER) is a fundamental Natural Language Processing (NLP) task and has remained an active research field. In recent years, transformer models and more specifically the BERT model developed at Google revolutionised the field of NLP. While the performance of transformer-based approaches such as BERT has been studied for NER, there has not yet been a study for the fine-grained Named Entity Recognition (FG-NER) task. In this paper, we compare three transformer-based models (BERT, RoBERTa, and XLNet) to two non-transformer-based models (CRF and BiLSTM-CNN-CRF). Furthermore, we apply each model to a multitude of distinct domains. We find that transformer-based models incrementally outperform the studied non-transformer-based models in most domains with respect to the F1 score. Furthermore, we find that the choice of domains significantly influenced the performance regardless of the respective data size or the model chosen.
%R 10.18653/v1/2020.coling-main.334
%U https://aclanthology.org/2020.coling-main.334/
%U https://doi.org/10.18653/v1/2020.coling-main.334
%P 3750-3760
Markdown (Informal)
[Evaluating Pretrained Transformer-based Models on the Task of Fine-Grained Named Entity Recognition](https://aclanthology.org/2020.coling-main.334/) (Lothritz et al., COLING 2020)
ACL