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Abstract

This paper studies the effects of word-level linguistic annotations in under-resourced neural
machine translation, for which there is incomplete evidence in the literature. The study covers
eight language pairs, different training corpus sizes, two architectures and three types of annotation:
dummy tags (with no linguistic information at all), part-of-speech tags, and morpho-syntactic
description tags, which consist of part of speech and morphological features. These linguistic
annotations are interleaved in the input or output streams as a single tag placed before each word.
In order to measure the performance under each scenario, we use automatic evaluation metrics and
perform automatic error classification. Our experiments show that, in general, source-language
annotations are helpful and morpho-syntactic descriptions outperform part of speech for some
language pairs. On the contrary, when words are annotated in the target language, part-of-speech
tags systematically outperform morpho-syntactic description tags in terms of automatic evaluation
metrics, even though the use of morpho-syntactic description tags improves the grammaticality of
the output. We provide a detailed analysis of the reasons behind this result.

1 Introduction

Training neural machine translation (NMT) systems for under-resourced language pairs, for which the
amount of parallel corpora is orders of magnitude smaller than those available for prevailing language
pairs, may be challenging. Recently, Sennrich and Zhang (2019) have shown that even under these
circumstances, NMT surpasses classical approaches such as phrase-based statistical MT (Koehn, 2010).
In these under-resourced scenarios, the use of relevant linguistic word-level annotations has proved to
improve translation performance (Sennrich and Haddow, 2016; Nadejde et al., 2017).

Linguistic annotations can be used to label source-language (SL) or target-language (TL) words. The
former lead to more accurate representations of the SL sentence (Sennrich and Haddow, 2016) and
usually require changes in the encoder but not in the training loss (Chen et al., 2017; Li et al., 2018).
The latter involve producing probability distributions for both TL words and TL linguistic annotations,
which can be seen as a form of multi-task learning. Multi-task learning architectures explored in the
literature include: independent decoders for words and linguistic annotations (Zhou et al., 2017; Wu et
al., 2018; Gū et al., 2018; Wang et al., 2018; Yang et al., 2019); independent output layers in the same
decoder (Garcı́a-Martı́nez et al., 2016; Grönroos et al., 2017; Feng et al., 2019); and even sharing the
same network for both tasks (Nadejde et al., 2017; Tamchyna et al., 2017; Wagner, 2017) and alternatively
produce linguistic annotations and words. The latter approach is usually referred to as interleaving.

We can also classify the approaches according to the type of linguistic annotations used: part-of-speech
tags (Feng et al., 2019; Yang et al., 2019); morpho-syntactic description tags, which comprise part of
speech and morphological inflection information (Garcı́a-Martı́nez et al., 2016; Tamchyna et al., 2017);
and syntactic structure information (Nadejde et al., 2017; Chen et al., 2017; Zhou et al., 2017; Wu et al.,
2018; Gū et al., 2018; Wang et al., 2018). Using morpho-syntactic description tags as TL annotations
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allows us to train the network to produce TL lemmas instead of surface forms (words as they appear in
running texts). This strategy can reduce data sparseness but requires the use of an external morphological
generator as a post-processing step (Tamchyna et al., 2017).

Despite the body of work published about this topic, no strategy has clearly emerged as the most
appropriate method for integrating linguistic annotations into NMT. The literature mainly contains
incomplete evidence. For instance, Yang et al. (2019) conclude that TL part-of-speech annotations boost
translation quality with an ad-hoc architecture, but Wagner (2017) claims that TL morpho-syntactic
description tags degrade translation quality when they are interleaved: it is not clear whether the difference
between both results is caused by the type of linguistic annotations or by the approach followed to integrate
them. There are also contradictory results, such as those reported by Tamchyna et al. (2017), who claim
that TL annotations are only useful when they are combined with lemmatisation, and Nadejde et al. (2017),
who report positive results without lemmatisation. In addition, the influence of factors such as the size of
the available training parallel corpus and the language typology have not been properly evaluated.

In this paper, we aim at clarifying how linguistic annotations help NMT by carrying out systematic
experiments with eight language pairs. We focus on an under-resourced scenario where linguistic
annotations are likely to provide information that cannot be inferred from scarce training data. We analyse
multiple factors, namely, language typology, side which is annotated with linguistic information (SL, TL
or both), architecture of the NMT system, training corpus size, and type of information encoded in the
tags. For the latter factor, we focus only on part-of-speech tags and morpho-syntactic description tags,
since other type of annotations, such as CCG supertags (Steedman, 2000), are unlikely to be available for
under-resourced languages. We train systems on linguistically annotated surface forms via interleaving,
which does not require modifications to the neural network and allows us to easily compare different types
of linguistic annotations and NMT architectures. In addition, an automatic error classification allows us
to qualitatively compare them. A qualitative analysis has only been previously performed by Nadejde et
al. (2017), but it covered only two language pairs with English as TL, and a single type of annotation.

The rest of the paper is organised as follows. Next section overviews the process of interleaving
linguistic annotations in the training data. Section 3 then describes the experimental settings whereas
Section 4 reports and discusses the results obtained. Section 5 presents automatic error classification
results for all the systems evaluated, while Section 6 studies the reasons behind the poor performance of
systems with TL morpho-syntactic description tags. The paper ends with some concluding remarks.

2 Interleaving in neural machine translation

The interleaving approach for integrating linguistic annotations into NMT (Nadejde et al., 2017) annotates
each word with a single tag which is interleaved in the sentence before the word, i.e. introduced in the
sentence as if it were another word. In our experiments, tags can represent either the part of speech (POS)
of the word or its morpho-syntactic description (MSD). As corpora are pre-processed with BPE (Sennrich
et al., 2016b), the tag is introduced just once, before the first sub-word unit. To study if the effect of using
tags is related to the fact that input and output sequences get longer and word boundaries are explicitly
defined, and not to the information provided by tags, we also tried with a dummy tag (DUM) conveying
no linguistic information at all, and used the same dummy tag for every word (Wagner, 2017). Interleaved
TL tags are removed from the final translation generated by the system before computing the automatic
evaluation metrics.

The example below shows the result of interleaving MSD tags in the English sentence It has happened
before. The sentence contains a pronoun (PRON) followed by an auxiliary verb (AUX), a main verb
(VERB), an adverb (ADV) and a punctuation mark (PUNCT). The analysis of the pronoun tells us that it is
personal, nominative, neuter, singular, and 3rd-person. The symbol @@ acts as a sub-word unit separator.

PRON Case=Nom|Gender=Neut|Number=Sing|Person=3|PronType=Prs it
AUX Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin has
VERB Tense=Past|VerbForm=Part happen@@ ed ADV before PUNCT .
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3 Experimental settings

We conducted experiments for the translation of English text into four languages, and vice-versa. These
languages —Czech (cs), German (de), Spanish (es) and Turkish (tr)— belong to different language
families and differ at the syntactic and morphological levels. German, Czech and Spanish are Indo-
European languages: they are, respectively, Germanic, Slavic and Romance. Both German and Czech
have declension and SVO sentence structure, except for the subordinate sentences in German, which are
SOV. Spanish has no declension and its sentence structure is SVO. Turkish is an agglutinative Turkic
language with declension and SOV sentence structure. The morphological differences between these
languages are reflected in the sparsity of the MSD tags: the number of unique tags in the interleaved
training corpora ranges from a few hundreds for English and Spanish to a few thousands for Czech,
German and Turkish.1

We simulated an under-resourced scenario by downsampling available parallel corpora for the selected
language pairs. Downsampling has important advantages over using truly under-resourced language pairs:
(i) we can choose languages from different families and evaluate them on standard, high-quality test
sets; (ii) we can confirm whether conclusions hold for richer-resource scenarios by training on larger
datasets for the same language pairs; and (iii) linguistic annotations can be obtained with the same
state-of-the-art morphological analyser, minimising the potential distortions introduced by differences in
the morphological analyser technology and in performance between the languages. The POS and MSD
tags were obtained by means of the StandfordNLP tagger (Qi et al., 2018). In any case, the approaches
described in this paper could be applied to truly under-resourced language pairs as transfer learning allows
to obtain morphological analysers even from scarce morphologically annotated data (Kondratyuk, 2019).

Corpora. The training, development and test sets used belong to the news domain. For training, we
used texts from the News Commentary v14 corpus,2 except for Turkish, for which we used texts from
the SETimes corpus (Tyers and Alperen, 2010). For development and testing we used evaluation sets
from the WMT 2019 Conference on Machine Translation, each of which contains around 3,000 parallel
sentences.3 To see if the conclusions drawn on the under-resourced settings hold in a richer-resourced
scenario, we trained English–German systems (in both directions) on the concatenation of the parallel
data made available for the WMT 2017 shared task on news translation4 plus the synthetic parallel data
obtained through back-translation released by Sennrich et al. (2016a).

All corpora were tokenised and truecased with the Moses scripts5 and parallel sentences longer than
100 words in either side were discarded. Table 1 provides information about the training corpora after
their pre-processing. We trained translation models on these corpora and on random sub-sets of them
containing 50k parallel sentences (except for the WMT training data). The token counts depicted in
Table 1 for the under-resourced scenario are similar to those listed in the OPUS collection (Tiedemann,
2012) for under-resourced language pairs such as English–Kurdish or English–Igbo; token counts for the
50k subsets match other pairs with even smaller resources available in OPUS, such as English–Kazakh.

Translation models. We tested the performance of the recurrent-neural-network encoder-decoder with
attention (hereafter, recurrent; Bahdanau et al., 2015) and the Transformer (Vaswani et al., 2017) architec-
tures when the different types of tags introduced in Section 2 are interleaved in the SL input sequence, in
the TL output sequence, and in both of them. For each architecture, we also trained a baseline using no
tags at all. To keep the experiments to a manageable size, the systems that included tags in both languages
were not trained on the nine possible combinations of tag types (three in the SL and three in the TL).
Instead, they were trained only on SL MSD and TL POS tags, which were those with the best general
performance when used in isolation in the SL and in the TL, respectively. For the same reason, we only
explored the SL MSD/TL POS tag combination for systems trained on large-scale WMT data.

1The exact figures are as follows: English: 208; Czech: 1,904; German: 1,077; Spanish: 365; Turkish: 1,859.
2http://data.statmt.org/news-commentary/v14/
3For Turkish, German and Czech we used newstest2017 and newstest2018 for development and testing, respectively. For

Spanish, we used newstest2012 for development and newstest2013 for testing.
4http://data.statmt.org/wmt17/translation-task/preprocessed
5https://github.com/moses-smt/mosesdecoder/tree/master/scripts
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language pair tokens sentences language pair tokens sentences
under-resourced WMT

English–Czech 6.0M – 5.4M 240k English–German 212M – 200M 9.4M
English–German 8.4M – 8.4M 329k German–English 232M – 240M 10.0M
English–Spanish 9.5M – 10.6M 367k
English–Turkish 5.2M – 4.7M 208k

Table 1: Number of sentences and tokens in the parallel corpora used for training. The column labelled
as tokens depicts the number of tokens for each language of the pair, in the order defined by the content of
the column language pair. Figures for the WMT data differ between both directions because of the use of
backtranslated corpora.

In order to determine the appropriate values for training hyper-parameters, a grid search over the number
of BPE operations and the neural network sizes was carried out. The optimum hyper-parameter values for
each language pair, training corpus size and architecture were obtained after training the baseline systems.
These hyper-parameters were also used with the systems integrating linguistic annotations. Appendix A
provides a detailed description of the training process.

Error classification. We followed the automatic error analysis strategy by Toral and Sánchez-Cartagena
(2017), who used the tool Hjerson (Popović, 2011) to classify word errors into five categories: inflection,
reordering, missing words, extra words and incorrect lexical choices. As it is difficult to automatically
distinguish between the latter three categories (Popović and Ney, 2011), we grouped them into a unique
category named lexical errors. Hjerson works on the surface form and lemma of the words in the reference
translations and MT outputs. The lemmas were obtained again with the StandfordNLP tagger.

4 Results and discussion

Table 2 shows the BLEU (Papineni et al., 2002) scores obtained by the different systems. A score in bold
means that the system outperforms the baseline (labelled as None) by a statistically significant margin.
A bullet (•) next to the score of a system with interleaved POS or MSD tags means that it outperforms
the system with DUM tags in the same language side (SL or TL) by a statistically significant margin.6

A dagger (†) next to the score of a system with POS or MSD tags means that it outperforms the system
with the opposite tag (either MSD or POS) in the same language side by a statistically significant margin.
Statistical significance was assessed with paired bootstrap resampling (Koehn, 2004) (p = 0.05; 1 000
iterations).

As the four languages paired with English are morphologically richer than English, we split the analysis
of the results we describe next into two groups: translation into a TL morphologically richer than the SL
(pairs with English as SL), and translation from a morphologically richer SL (pairs with English as TL). It
is also worth mentioning that, in all the scenarios evaluated, when a system was trained with interleaved
TL tags, the decoder alternately produced TL tags and surface forms at test time as expected.

Translation into a morphologically rich language. When the TL is morphologically richer than
the SL, interleaved tags lead to higher BLEU scores, although the impact changes depending on the
information encoded in the tag and the language where they are used (SL or TL). SL DUM tags are
not very effective: they bring a statistically significant increase in BLEU only to 2 out of the 8 systems
evaluated with the recurrent architecture,7 and to none of the 8 Transformer systems. SL POS and
MSD tags generally outperform DUM tags, as they contain information that helps to obtain a better
representation of the SL sentence and break the grammatical ambiguity of English (Sennrich and Haddow,
2016). There is a statistically significant difference between SL POS and SL MSD tags in 6 out of the 16
systems evaluated,8 and in 5 out of these 6 systems MSD tags outperform POS tags. For some language

6Those systems trained with both SL MSD and TL POS tags could not be compared with systems with both SL DUM and TL
DUM tags because the latter were not included in the experimental set-up in order to keep the experiments to a manageable size.
Hence, their scores do not contain any bullet.

7Four language pairs and two training corpus sizes.
8Four language pairs, two training corpus sizes and two architectures.
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Language Tags
English as SL English as TL

recurrent Transformer recurrent Transformer
50k Full 50k Full 50k Full 50k Full

Czech

None (baseline) 7.59 11.98 6.97 12.35 12.34 17.81 10.63 17.58
SL DUM 7.61 12.30 6.87 12.66 12.79 17.98 11.05 17.79
SL POS 7.75 12.33 7.18 12.62 13.06 18.05 11.00 17.99
SL MSD 8.15•† 12.55 7.35• 13.09•† 13.39• 18.08 11.70•† 18.71•†
TL DUM 7.64 12.14 6.49 12.75 12.69 17.94 10.78 18.62
TL POS 8.11• 12.58• 7.50•† 13.68•† 13.38• 18.76• 11.14 18.33
TL MSD 8.08• 12.41 7.14• 12.98 13.13• 18.54• 11.23• 18.45
SL MSD/TL POS 9.02 13.51 7.95 13.27 14.61 19.40 11.65 19.35

German

None (baseline) 17.17 26.79 15.07 28.32 18.52 27.61 14.97 27.73
SL DUM 17.19 27.40 14.98 27.97 18.85 27.98 15.35 27.90
SL POS 18.43• 27.78 16.34• 29.16• 19.63• 27.99 15.68 28.32•
SL MSD 18.41• 27.52 16.36• 29.01• 18.41• 27.97 15.86• 27.98
TL DUM 17.77 27.50 15.17 27.67 17.77 27.96 15.17 27.67
TL POS 17.97 28.06•† 15.48† 29.07•† 17.97 28.28• 15.48•† 29.07•
TL MSD 17.53 27.22 14.91 28.34• 17.53 28.45• 14.91 28.34
SL MSD/TL POS 20.44 29.31 17.20 29.46 20.44 29.78 17.20 29.46
WMT None (baseline) - 37.97 - 38.59 - 39.94 - 40.12
WMT SL MSD/TL POS - 39.51 - 38.48 - 40.61 - 40.40

Spanish

None (baseline) 20.75 26.75 19.18 26.78 19.88 25.59 18.03 25.82
SL DUM 21.13 27.03 19.28 26.63 20.30 26.18 18.46 25.80
SL POS 21.88• 26.92 19.57 27.11•† 20.78• 26.17 18.72 25.77
SL MSD 21.68• 27.29† 20.00•† 26.60 20.49 26.22 18.55 25.82
TL DUM 20.93 26.79 19.57 25.95 19.86 25.66 18.06 25.72
TL POS 21.29• 27.04 19.60 27.02• 20.91•† 26.17• 18.76• 26.09†
TL MSD 21.43• 26.91 19.72 27.23• 20.45• 26.13• 18.82• 25.60
SL MSD/TL POS 22.69 27.79 20.35 26.89 21.87 27.02 19.07 26.30

Turkish

None (baseline) 6.21 9.78 4.24 10.30 10.66 15.00 8.30 15.50
SL DUM 6.14 9.78 4.31 10.60 10.18 15.28 8.24 15.90
SL POS 6.98• 10.37• 4.38 10.69 10.65• 15.36 8.06 16.10
SL MSD 7.02• 10.80•† 4.62• 10.69 10.73• 15.39 7.90• 15.93
TL DUM 5.90 9.96 4.20 10.39 10.37 14.79 8.32 16.21
TL POS 6.50•† 10.08† 4.50• 10.66 10.84•† 14.56 9.43•† 16.12
TL MSD 5.96 9.63 4.59• 10.48 10.23 15.90•† 8.75• 16.42
SL MSD/TL POS 7.27 10.85 4.95 10.84 12.08 16.75 9.38 16.99

Table 2: BLEU scores computed on the test set for the different language pairs, corpus sizes and setups
evaluated. See Section 4 (first paragraph) for a description of the different symbols annotating the scores.

pairs and training corpus sizes, enriching the SL representation with information about number, verbal
mood, etc. proves to be useful.

We can find stronger differences between the different types of tags in the TL. TL DUM tags are
useful for the recurrent English–German systems, in line with the findings by Wagner (2017), but their
contribution to other language pairs and the Transformer architecture is less clear. The most relevant
trend is that using only POS tags in the TL consistently outperforms the use of MSD tags: statistically
significant differences are found in all TLs but Spanish, a Romance language which has the simplest
morphology. This result is further investigated in sections 5 and 6. Finally, combining SL MSD and TL
POS tags leads to the highest scores.

Translation from a morphologically rich language. The effects of using SL tags when the SL is
morphologically richer than the TL are similar to those observed in the opposite scenario: POS and MSD
tags often outperform DUM tags. When statistically significant differences between POS and MSD tags
are found, they favour MSD tags. Concerning TL tags, the systematic degradation observed for MSD tags
is less frequent than in the opposite direction, and it is mainly concentrated in the smallest corpus size. An
explanation could be that morphological information in English is less complex and easier to predict from
the SL sentence. Finally, combining SL MSD tags and TL POS tags also leads to the highest scores.

Large-scale training data. The results for the English–German WMT large-scale training data, also
depicted in Table 2, show a different picture. We can still observe that the use of interleaved tags brings
a statistically significant improvement, but this only happens in the recurrent architecture. Transformer
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Figure 1: For language pairs with English as SL, relative changes in the number of errors for each error
category, training corpus size and type of interleaved tag.

systems do not benefit from the interleaved linguistic annotations when the training corpus size is large.9

A potential explanation is provided in the next section.

Main findings. In line with previous works (Nadejde et al., 2017; Wagner, 2017), the results analysed
so far suggest that interleaved linguistic annotations are helpful both in the SL and the TL and they should
be included in both languages in order to maximize performance. While morphological features can be
useful in the SL, they should be avoided in the TL if it is morphologically rich. Even when large corpora
are available, linguistic annotations can help to boost translation quality.

5 Error analysis

To better understand the results obtained, we computed the relative difference in the number of Hjerson
errors between the systems with interleaved tags and the baseline;10 a positive value means that the system
made more errors than the baseline. As we did before, we split the results into two groups of language
pairs: those with English as SL, depicted in Figure 1, and those with English as TL, depicted in Figure 2.
In the remainder of this section, we analyse the results obtained and illustrate them with examples.

SL tags. SL POS and SL MSD tags systematically reduce lexical errors (green, empty squares and
triangles are below the horizontal line). Reordering errors are also reduced with the exception of English–
Czech, in which the TL has a relatively flexible word order.11 Concerning inflection errors, there is not

9In order to confirm that the differences observed were not caused by the random initialisation of the network weights,
we trained the systems on WMT data two more times. The BLEU scores obtained for the additional training runs confirm
that linguistic annotations only help in recurrent systems. We did not perform additional training runs for the under-resourced
scenario because of time constraints and because the conclusions drawn for that scenario are based on the results obtained for
different language pairs (and hence training runs), which we think makes them solid enough.

10Computed as (#errors interleaved−#errors baseline)/#errors baseline.
11Improvements in reordering quality are not captured by the automatic error classification if translation hypotheses with an

acceptable word order that differs from that in the reference are produced by the system.
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Figure 2: For language pairs with English as TL, relative changes in the number of errors for each error
category, training corpus size and type of interleaved tag.

clear trend. As aforementioned, a possible explanation could be that SL tags help to obtain more accurate
representations of the SL sentences; since inflection errors are related to modeling TL grammar rather
than to representing the SL sentence, they are not reduced by interleaving SL tags. All these results are
compatible with the evaluation metrics, which showed that SL tags generally improve translation quality.
In the first example in Table 3, SL tags help to obtain a better representation of the SL sentence: the
system is able to interpret that matters is acting as a noun and produces hace que las cosas sean simples
(en: it makes things simple) instead of hace que los alemanes sean simples (en: it makes Germans simple).

TL tags. Different error distributions can be observed depending on the information encoded in the TL
tags. TL MSD tags systematically reduce inflection errors in both architectures (the blue, filled triangle is
usually among the lowest points in the figure). The largest inflection error reductions occur with highly
inflected TLs such as Czech and Turkish. TL POS tags, on the contrary, do not systematically reduce
inflection errors. Hence, the system using TL MSD tags is using the morphological features they encode

Pair Tags Sentence

en-es

orig/ref. This does not make matters simple for the Germans. → Esto no resulta fácil para los alemanes.
None Esto no hace que los alemanes sean simples.
SL MSD Esto no hace que las cosas sean simples para los alemanes.

en-de

orig/ref, Miller was not engaging in literary criticism→Miller engagierte sich nicht in literarischer Kritik
TL POS Miller setzte sich nicht an literarische Kritik
TL MSD Miller befasste sich nicht mit literarischer Kritik

en-de

orig/ref ”The children should help prepare the food.”→ ”die Kinder sollen helfen, das Essen zuzubereiten”.
TL POS ”die Kinder sollten dabei helfen, die Nahrung vorzubereiten”.
TL MSD ”die Kinder sollten dazu beitragen, die Lebensmittel vorzubereiten”

Table 3: Examples of how interleaving SL or TL tags change the translations. Translations obtained with
the recurrent systems trained on the full News Commentary corpus.
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Figure 3: For language pairs with English as SL, tag prediction accuracy (labelled as Tags) and surface
form prediction accuracy (labelled as S.F.) forcing, respectively, surface forms and tags from the reference.

(tense, number, etc.) for producing the correct inflected form according to the reference. In the second
example in Table 3, the system using TL MSD tags generates the right inflected form of the German word
literarische because it has predicted its dative case first.

However, the prediction of MSD tags with complex morphology (see Figure 1) also leads to an increase
in lexical errors in comparison with the prediction of POS tags. It can be observed that TL MSD tags
bring an increase in lexical errors over the baseline (note the green, filled triangles at the top of the
figures), while the impact in lexical errors of the POS tags is less clear. Similarly to inflection errors, the
difference between the increases of lexical errors brought by MSD and POS tags is larger for Turkish and
Czech, which are the two languages with the most sparse MSD tags. Turkish is a Turkic agglutinative
language and Czech is a Slavic fusional language with seven cases and four genders. This is compatible
with the automatic evaluation metrics: although using TL MSD tags leads to a more grammatical output,
the increase in lexical errors makes the system produce translations that are overall less similar to the
reference. Note that lexical errors are the most frequent ones.12 The third example in Table 3 shows that
the system with TL MSD tags translates the verb help as beitragen rather than helfen, which is a more
precise translation in that context.

When SL MSD tags and TL POS tags are both interleaved, there is a general reduction in the three
error categories as compared with the systems using only tags in one of the languages. This confirms that
the advantages of SL and TL tags are complementary.

Differences between architectures. Finally, there is a noticeable difference in how the type of errors
made by the systems change when interleaving TL tags in recurrent and Transformer architectures.
Reordering errors consistently increase in Transformer systems, while they tend to decrease in recurrent
systems. Moreover, TL DUM tags consistently increase the total number of translation errors when they
are added to a Transformer system and the TL is highly inflected (observe the red, filled circle usually
above the horizontal line in Figure 1), while their impact is not clear in recurrent systems. These two
findings suggest that adding extra tokens to the TL stream is not the best way of introducing linguistic
annotations in self-attention-based NMT systems. It could also explain the results for the large-scale
WMT data, where only recurrent systems were able to take advantage of the linguistic annotations.
This hypothesis is also compatible with the results reported on WMT data by Yang et al. (2019), who
successfully leveraged TL linguistic annotations in Transformer systems using an ad-hoc architecture.

6 Analysing the effect of target language morphology

We compare the output of the systems interleaving TL POS and TL MSD tags in order to ascertain whether
the increase in lexical errors is caused by the difficulty of predicting the more complex and sparse MSD

12For the baseline recurrent system, the average and standard deviation over the four language pairs with English as SL of the
absolute number of errors of each type in the test set, expressed in thousands, are as as follows. Inflection: 4.1 ± 0.7, Reordering:
5.3 ± 0.6 , Lexical: 28.7 ± 2.1.
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(a) English as SL. (b) English as TL.

Figure 4: POS prediction accuracy (labelled as POS) and surface form prediction accuracy (labelled as
S.F.) forcing, respectively, surface forms and POS tags from the reference.

tags, or by the conditioning of the prediction of surface forms on TL MSD tags. In the latter case, there is
the risk that the system learns to strongly condition on tags and avoids generating new words (Tamchyna
et al., 2017). This problem could be exacerbated by the sparsity of TL MSD tags because some of them
may co-occur only with a few surface forms in the training corpus.

We tried to answer this question by independently evaluating the prediction of tags and surface forms,
and comparing the systems interleaving POS and MSD tags. The prediction of surface forms was evaluated
by re-decoding the test set and forcing the system to choose the tags from the reference during beam
search, whereas the prediction of tags was evaluated by forcing the surface forms from the reference. If
the system really learned to strongly condition on tags, when a tag was observed together with only a few
surface forms in the training corpus, low-frequency words would not be generated when translating the
test set. To test this hypothesis we studied the surface form prediction accuracy for two subsets: infrequent
words (frequency≤ 10 in the training set) and out-of-vocabulary (OOV) words. Figure 3 shows the results
for those language pairs with English as SL. It can be observed that there is a trade-off between tag and
surface form prediction accuracy: MSD tags are more difficult to predict, but conditioning on them leads
to better surface form prediction. On low-frequency and OOV words, MSD tags still outperform POS tags
in terms of surface form prediction accuracy, although the difference between them is smaller.

For a fair comparison of both types of tags, we computed the part-of-speech prediction accuracy when
predicting MSD tags. The results are depicted in the rows labelled as POS in Figure 4. For highly inflected
TLs, those systems that predict MSD tags have consistently lower POS prediction accuracy than those
that predict only POS tags. The difference is larger for recurrent systems. These results suggest that the
difficulty of predicting together the part of speech and its morphological features is indeed one of the
reasons behind the lexical degradation of systems using MSD tags. Sparseness of MSD tags seems to play
an important role in this degradation: highly inflected TLs present the largest degradation.

To evaluate the impact of predicting morphological features regardless of the low part-of-speech
accuracy of MSD tags, we re-computed surface form prediction accuracy by letting the beam search
algorithm choose among those MSD tags with the part of speech in the reference. The results, depicted
in the rows labelled as S.F. in Figure 4, show that, if the systems with interleaved MSD tags correctly
predicted the part of speech, the surface form predictions would not be worse than those of systems with
interleaved POS tags, neither in general nor for low-frequency and out-of-vocabulary words. Hence,
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errors in surface form prediction arising from strongly conditioning on sparse MSD tags do not seem
to be the main cause behind the degradation of translation quality brought by TL MSD tags. Actually,
when tags with the part of speech of the reference are chosen, conditioning on MSD tags outperforms
conditioning on POS tags in terms of overall surface form prediction accuracy for language pairs with
English as TL. For the other language pairs, the gain introduced by MSD tags is less clear. One possible
reason could be that BPE segmentation does not allow the system to learn a general mapping between tags
and word endings from the training data. Another explanation could be related to the fact that predicting
the morphological gender for German, Czech and Spanish forces the tag prediction task to be aware of TL
lexical information, preventing an optimum division of labour between tag and surface form predictions.

In conclusion, the prediction of TL morphological information needs to be factorised differently in
order not to harm part-of-speech prediction. For instance, in the morphological analysis field, Chaudhary
et al. (2019) and Straka et al. (2019) predict part of speech and each morphological attribute independently.

7 Concluding remarks

In this paper, we have studied the effects of using linguistic annotations of SL and TL words in under-
resourced NMT by interleaving linguistic tags for different language pairs, architectures, training data
sizes and types of linguistic information (part of speech and morpho-syntactic descriptions).

We have shown that both SL and TL linguistic annotations are useful, in line with previous works in
the literature (Wagner, 2017). SL linguistic annotations lead to more accurate SL sentence representations,
and for some language pairs, the use of morpho-syntactic descriptions (consisting of part of speech and
morphological features) improves the representation obtained when only part-of-speech tags are used.
Surprisingly, for highly inflected TLs, TL linguistic annotations are more useful if they simply consist of
part-of-speech information. Using morpho-syntactic descriptions leads to an overall translation quality
degradation in terms of automatic evaluation metrics, even though it improves the grammaticality of the
output. We have also shown that predicting TL morpho-syntactic descriptions frequently results in wrong
part-of-speech predictions. Hence, to optimize the use of TL morphological information in NMT, it is
advisable to avoid the prediction of part-of-speech and morphological features together as monolithic tags.

The gain introduced by linguistic information encoded as interleaved tags scales to large data availability
scenarios only for the recurrent architecture. This result, together with the conclusions of the automatic
error analysis, suggest that adding extra tokens to the TL stream is not the optimum way of introducing
additional linguistic information in self-attention-based NMT systems.

In summary, the use of morpho-syntactic descriptions in the SL and part-of-speech information
in the TL, which can be easily obtained even in under-resourced scenarios, systematically improves
translation quality when they are simply interleaved in training data as linguistic tags, even without using
a morphological generator (Tamchyna et al., 2017), which could be error-prone for under-resourced
languages, and without any kind of information about syntactic structures.
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Language English as SL English as TL
50k Full 50k Full

Czech 5 000;False;512; 512 10 000;True;1024; 512 5 000;False;1024; 512 10 000;False;1024; 512
German 5 000;True;1024; 512 10 000;True;1024; 512 5 000;False;1024; 512 10 000;False;1024; 512
Spanish 5 000;False;1024; 512 5 000;True;1024; 512 5 000;True;1024; 512 5 000;False;1024; 512
Turkish 5 000;False;1024; 512 10 000;False;1024; 512 5 000;True;1024; 512 10 000;False;1024; 512

Table 4: Optimum hyper-parameters for recurrent models. Each cell contains, in this order: number of
BPE operations, whether TL input and output embeddings are shared, size of the hidden layer and size of
the embedding layer.

Language English as SL English as TL
50k Full 50k Full

Czech 20 000;True;256; 4; 4 10 000;True;256; 4; 4 20 000;True;256; 4; 4 20 000;True;256; 4; 4
German 5 000;True;256; 4; 4 10 000;True;256; 4; 4 20 000;True;256; 4; 4 10 000;True;256; 4; 4
Spanish 5 000;True;256; 4; 4 10 000;True;512; 6; 8 5 000;True;256; 4; 4 10 000;True;512; 6; 8
Turkish 20 000;True;128; 2; 2 10 000;True;256; 4; 4 5 000;True;128; 2; 2 20 000;True;256; 4; 4

Table 5: Optimum hyper-parameters for Transformer models. Each cell contains, in this order: number of
BPE operations, whether TL input and output embeddings are shared, size of the model, number of layers
and number of attention heads.

A Training details

The optimum training hyper-parameters were obtained by following the grid search process depicted next.
At each step, we chose the hyper-parameters that maximised BLEU on the development set. Table 4
shows the optimum hyper-parameters for each language pair and training corpus size for the recurrent
architecture while Table 5 shows the same information for the Transformer architecture.

• First, we explored the optimum number of BPE operations among the following values: 5,000,
10,000, 20,000, and 40,000. The rest of hyper-parameters were set to the values recommended by
Sennrich et al. (2017) for the recurrent architecture and by Vaswani et al. (2017) for the Transformer
architecture (“base” configuration), respectively.

• With the optimum number of BPE operations, we then tested if better results could be obtained with
tied embeddings (Press and Wolf, 2017) in the decoder.

• Finally, we explored the following combinations of hyper-parameter values for each architecture
with the best number of BPE operations and tied embedding configuration obtained in the previous
steps.

recurrent: Hidden and embedding sizes:(1024, 512), (512, 512), (512, 256) and (256, 256).
Transformer: Model size, number of layers in the encoder and the decoder and number of attention

heads: (512, 6, 8), (256, 4, 4), (128, 2, 2).

For all systems trained, we applied label smoothing with a value of 0.1 and dropout of 0.1. Unlike Sen-
nrich and Zhang (2019), we did not use a lexical model neither word dropout. The optimisation algorithm
was Adam (Kingma and Ba, 2015) with the inverse square root learning rate decay (Vaswani et al., 2017,
Sec. 5.3) and 8,000 warm-up iterations. Learning rates were initialised to 0.0004 for recurrent and to
0.0003 for Transformer. Training stopped after 10 validations without any perplexity improvement on
the development corpus; validations were performed every 1,000 mini-batches. The model finally used
is the one for which the best BLEU score was obtained on the development corpus. We used the same
amount of sentences per mini-batch for all the models trained for a given TL and corpus size; the amount
of sentences in each mini-batch ensures that, when SL and TL MSD tags are interleaved, the amount of
tokens is below 4,500.


